已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study

医学 血管病学 心力衰竭 多中心研究 回顾性队列研究 内科学 糖尿病 心脏病学 急诊医学 重症监护医学 内分泌学 随机对照试验
作者
Xiaozhu Liu,Zulong Xie,Yang Zhang,Jian Huang,Lirong Kuang,Xiujuan Li,Huan Li,Yuxin Zou,Tianyu Xiang,Niying Yin,Xiaoqian Zhou,Jie Yu
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:23 (1) 被引量:1
标识
DOI:10.1186/s12933-024-02503-9
摘要

Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop and test an individualized machine learning model to assess risk factors and predict in-hospital mortality in in these patients. From January 2012 to December 2021, this study collected data on elderly patients with heart failure and hypertension from the Chongqing Medical University Medical Data Platform. Least absolute shrinkage and the selection operator was used for recognizing key clinical variables. The optimal predictive model was chosen among eight machine learning algorithms on the basis of area under curve. SHapley Additive exPlanations and Local Interpretable Model-agnostic Explanations was employed to interpret the outcome of the predictive model. This study ultimately comprised 4647 elderly individuals with hypertension and heart failure. The Random Forest model was chosen with the highest area under curve for 0.850 (95% CI 0.789–0.897), high accuracy for 0.738, recall 0.837, specificity 0.734 and brier score 0.178. According to SHapley Additive exPlanations results, the most related factors for in-hospital mortality in elderly patients with heart failure and hypertension were urea, length of stay, neutrophils, albumin and high-density lipoprotein cholesterol. This study developed eight machine learning models to predict in-hospital mortality in elderly patients with hypertension as well as heart failure. Compared to other algorithms, the Random Forest model performed significantly better. Our study successfully predicted in-hospital mortality and identified the factors most associated with in-hospital mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sigrid发布了新的文献求助10
刚刚
1秒前
1秒前
6秒前
一只熊完成签到 ,获得积分10
6秒前
rpe完成签到,获得积分20
7秒前
星辰大海应助鸽子爱好者采纳,获得10
13秒前
nan完成签到,获得积分10
13秒前
柔弱熊猫完成签到 ,获得积分10
14秒前
CC发布了新的文献求助10
15秒前
lh完成签到 ,获得积分10
16秒前
20秒前
冷静傲丝完成签到 ,获得积分10
23秒前
sigrid完成签到,获得积分10
24秒前
包子完成签到,获得积分10
25秒前
wbqdssl完成签到 ,获得积分10
29秒前
知足的憨人*-*完成签到,获得积分10
31秒前
momo应助桀桀桀采纳,获得10
31秒前
azhou176完成签到,获得积分10
32秒前
lucky完成签到 ,获得积分10
32秒前
丸子完成签到 ,获得积分10
32秒前
chestnut灬完成签到 ,获得积分10
33秒前
01259完成签到 ,获得积分10
33秒前
喜悦香薇完成签到 ,获得积分10
33秒前
36秒前
1230完成签到 ,获得积分10
37秒前
38秒前
Rondab应助科研通管家采纳,获得10
38秒前
领导范儿应助科研通管家采纳,获得10
38秒前
在水一方应助科研通管家采纳,获得10
38秒前
38秒前
白桦林泪完成签到,获得积分10
39秒前
yangzai完成签到 ,获得积分10
40秒前
42秒前
自然千山完成签到,获得积分10
42秒前
Augusterny完成签到 ,获得积分10
43秒前
YBR完成签到 ,获得积分10
44秒前
hellokitty发布了新的文献求助10
45秒前
白桦林泪发布了新的文献求助20
45秒前
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216