Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study

医学 血管病学 心力衰竭 多中心研究 回顾性队列研究 内科学 糖尿病 心脏病学 急诊医学 重症监护医学 内分泌学 随机对照试验
作者
Xiaozhu Liu,Zulong Xie,Yang Zhang,Jian Huang,Lirong Kuang,Xiujuan Li,Huan Li,Yuxin Zou,Tianyu Xiang,Niying Yin,Xiaoqian Zhou,Jie Yu
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:23 (1) 被引量:6
标识
DOI:10.1186/s12933-024-02503-9
摘要

Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop and test an individualized machine learning model to assess risk factors and predict in-hospital mortality in in these patients. From January 2012 to December 2021, this study collected data on elderly patients with heart failure and hypertension from the Chongqing Medical University Medical Data Platform. Least absolute shrinkage and the selection operator was used for recognizing key clinical variables. The optimal predictive model was chosen among eight machine learning algorithms on the basis of area under curve. SHapley Additive exPlanations and Local Interpretable Model-agnostic Explanations was employed to interpret the outcome of the predictive model. This study ultimately comprised 4647 elderly individuals with hypertension and heart failure. The Random Forest model was chosen with the highest area under curve for 0.850 (95% CI 0.789–0.897), high accuracy for 0.738, recall 0.837, specificity 0.734 and brier score 0.178. According to SHapley Additive exPlanations results, the most related factors for in-hospital mortality in elderly patients with heart failure and hypertension were urea, length of stay, neutrophils, albumin and high-density lipoprotein cholesterol. This study developed eight machine learning models to predict in-hospital mortality in elderly patients with hypertension as well as heart failure. Compared to other algorithms, the Random Forest model performed significantly better. Our study successfully predicted in-hospital mortality and identified the factors most associated with in-hospital mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lelele发布了新的文献求助10
1秒前
1秒前
2秒前
dongdoctor完成签到 ,获得积分10
2秒前
魏莱发布了新的文献求助10
2秒前
Ulrica完成签到,获得积分10
2秒前
CipherSage应助包容追命采纳,获得10
2秒前
owldan完成签到 ,获得积分10
4秒前
一直向前完成签到,获得积分10
4秒前
舒服的映安完成签到 ,获得积分10
4秒前
lmh011115发布了新的文献求助10
5秒前
6秒前
一直向前发布了新的文献求助10
6秒前
End完成签到 ,获得积分10
7秒前
沉静的红酒完成签到,获得积分10
8秒前
yzxzdm完成签到 ,获得积分10
8秒前
Yara.H完成签到 ,获得积分10
8秒前
Meng完成签到,获得积分10
9秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
包容追命发布了新的文献求助10
15秒前
15秒前
梦鱼完成签到,获得积分10
16秒前
小林不熬夜完成签到,获得积分10
16秒前
玛卡巴卡完成签到,获得积分10
17秒前
希尔伯特发布了新的文献求助10
19秒前
Jasper应助dailyyang采纳,获得10
19秒前
冬凌草完成签到 ,获得积分10
19秒前
阿若完成签到,获得积分10
19秒前
英姑应助单纯冰棍采纳,获得10
19秒前
高高从霜完成签到 ,获得积分10
20秒前
lmh011115完成签到,获得积分10
20秒前
包容追命完成签到,获得积分20
21秒前
zhenya完成签到,获得积分10
22秒前
xiang929完成签到 ,获得积分10
24秒前
小文子完成签到,获得积分10
24秒前
Mae完成签到 ,获得积分10
25秒前
25秒前
26秒前
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048