Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study

医学 血管病学 心力衰竭 多中心研究 回顾性队列研究 内科学 糖尿病 心脏病学 急诊医学 重症监护医学 内分泌学 随机对照试验
作者
Xiaozhu Liu,Zulong Xie,Yang Zhang,Jian Huang,Lirong Kuang,Xiujuan Li,Huan Li,Yuxin Zou,Tianyu Xiang,Niying Yin,Xiaoqian Zhou,Jie Yu
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:23 (1) 被引量:1
标识
DOI:10.1186/s12933-024-02503-9
摘要

Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop and test an individualized machine learning model to assess risk factors and predict in-hospital mortality in in these patients. From January 2012 to December 2021, this study collected data on elderly patients with heart failure and hypertension from the Chongqing Medical University Medical Data Platform. Least absolute shrinkage and the selection operator was used for recognizing key clinical variables. The optimal predictive model was chosen among eight machine learning algorithms on the basis of area under curve. SHapley Additive exPlanations and Local Interpretable Model-agnostic Explanations was employed to interpret the outcome of the predictive model. This study ultimately comprised 4647 elderly individuals with hypertension and heart failure. The Random Forest model was chosen with the highest area under curve for 0.850 (95% CI 0.789–0.897), high accuracy for 0.738, recall 0.837, specificity 0.734 and brier score 0.178. According to SHapley Additive exPlanations results, the most related factors for in-hospital mortality in elderly patients with heart failure and hypertension were urea, length of stay, neutrophils, albumin and high-density lipoprotein cholesterol. This study developed eight machine learning models to predict in-hospital mortality in elderly patients with hypertension as well as heart failure. Compared to other algorithms, the Random Forest model performed significantly better. Our study successfully predicted in-hospital mortality and identified the factors most associated with in-hospital mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助露亮采纳,获得10
1秒前
顾矜应助Bressanone采纳,获得10
1秒前
阳光发布了新的文献求助10
2秒前
半夏发布了新的文献求助10
3秒前
4秒前
5秒前
Miracle_wh完成签到,获得积分10
5秒前
6秒前
Miracle_wh发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
11秒前
圆月弯刀完成签到 ,获得积分10
12秒前
坦率白萱应助DJANGO采纳,获得30
14秒前
露亮完成签到,获得积分10
15秒前
Bressanone发布了新的文献求助10
15秒前
16秒前
斯文的慕儿完成签到 ,获得积分10
18秒前
露亮发布了新的文献求助10
18秒前
18秒前
智慧少女不头秃完成签到,获得积分10
20秒前
33完成签到,获得积分10
21秒前
所所应助感谢有你采纳,获得10
23秒前
23秒前
24秒前
25秒前
乐乐应助anna采纳,获得10
28秒前
潇湘雪月发布了新的文献求助10
28秒前
28秒前
刘燕发布了新的文献求助10
29秒前
29秒前
30秒前
量子星尘发布了新的文献求助10
33秒前
俏皮芷蕊发布了新的文献求助10
33秒前
34秒前
37秒前
37秒前
38秒前
Rondab应助张学友采纳,获得10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136