有机磷
肠-脑轴
马拉硫磷
认知障碍
疾病
医学
生物
神经科学
内科学
杀虫剂
生态学
作者
Jingna Cui,Shouchun Xiao,Yue Cao,Yaru Zhang,Jiaxing Yang,Li Zheng,Fanrong Zhao,Xueke Liu,Donghui Liu,Zhiqiang Zhou,Peng Wang
标识
DOI:10.1021/acs.est.4c07427
摘要
Evidence suggests that exposure to organophosphate pesticides increases the risk of neurodegenerative diseases, but the mechanisms remain unclear. This study investigated the effects of malathion on Alzheimer's disease (AD)-like symptoms at environmentally relevant concentrations using wild-type (WT) and APP/PS1 transgenic mouse models. Results showed that malathion exposure induced AD-like cognitive impairment, amyloid-β (Aβ) accumulation, and neuroinflammation in WT mice, with worsened symptoms in APP/PS1 mice. Mechanistic studies revealed that malathion induced AD-like gut microbiota dysbiosis (reduced Lactobacillus and Akkermansia, and increased Dubosiella), causing gut barrier impairment and tryptophan metabolism disruptions. This resulted in a significant increase in indole derivatives and activation of the colonic aryl hydrocarbon receptor (AhR), promoting the kynurenine (KYN) pathway while inhibiting the serotonin (5-HT) pathway. Increased neurotoxic KYN metabolites (3-hydroxykynurenine and quinolinic acid) triggered gut and systemic inflammation, upregulating hippocampal IL-6 and IL-1β mRNA levels and thereby causing neuroinflammation. Gut tryptophan metabolism disruptions caused hippocampal neurotransmitter imbalances, reducing the levels of 5-HT and its derivatives. These effects promoted AD progression in both WT and APP/PS1 mice. This study highlights the crucial role of the microbiota-gut-brain axis in AD-like cognitive impairment induced by malathion exposure, providing insights into the neurodegenerative disease risks posed by organophosphate pesticides.
科研通智能强力驱动
Strongly Powered by AbleSci AI