脂肪组织
表观遗传学
肥胖
减肥
生物
医学
内分泌学
遗传学
基因
作者
Laura Hinte,Daniel Castellano‐Castillo,Adhideb Ghosh,Kate Melrose,Emanuel Gasser,Falko Noé,Lucas Massier,Hua Dong,Wenfei Sun,Anne Hoffmann,Christian Wolfrum,Mikael Rydén,Niklas Mejhert,Matthias Blüher,Ferdinand von Meyenn
出处
期刊:Nature
[Springer Nature]
日期:2024-11-18
标识
DOI:10.1038/s41586-024-08165-7
摘要
Abstract Reducing body weight to improve metabolic health and related comorbidities is a primary goal in treating obesity 1,2 . However, maintaining weight loss is a considerable challenge, especially as the body seems to retain an obesogenic memory that defends against body weight changes 3,4 . Overcoming this barrier for long-term treatment success is difficult because the molecular mechanisms underpinning this phenomenon remain largely unknown. Here, by using single-nucleus RNA sequencing, we show that both human and mouse adipose tissues retain cellular transcriptional changes after appreciable weight loss. Furthermore, we find persistent obesity-induced alterations in the epigenome of mouse adipocytes that negatively affect their function and response to metabolic stimuli. Mice carrying this obesogenic memory show accelerated rebound weight gain, and the epigenetic memory can explain future transcriptional deregulation in adipocytes in response to further high-fat diet feeding. In summary, our findings indicate the existence of an obesogenic memory, largely on the basis of stable epigenetic changes, in mouse adipocytes and probably other cell types. These changes seem to prime cells for pathological responses in an obesogenic environment, contributing to the problematic ‘yo-yo’ effect often seen with dieting. Targeting these changes in the future could improve long-term weight management and health outcomes.
科研通智能强力驱动
Strongly Powered by AbleSci AI