Zeolite membrane with sub-nanofluidic channels for superior blue energy harvesting

沸石 功率密度 渗透力 卤水 材料科学 化学工程 碱度 反向电渗析 无定形固体 多孔性 离子 化学物理 化学 功率(物理) 复合材料 结晶学 热力学 有机化学 正渗透 反渗透 物理 生物化学 催化作用 电渗析 工程类
作者
Ruicong Wei,Xiaowei Liu,Li Cao,Cailing Chen,I‐Chun Chen,Zhen Li,Jun Miao,Zhiping Lai
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1038/s41467-024-54755-4
摘要

Blue energy, a clean energy source derived from salinity gradients, has recently drawn increased research attention. It can be harvested using charged membranes, typically composed of amorphous materials that suffer from low power density due to their disordered structure and low charge density. Crystalline materials, with inherently ordered porous structures, offer a promising alternative for overcoming these limitations. Zeolite, a crystalline material with ordered sub-nanofluidic channels and tunable charge density, is particularly well-suited for this purpose. Here, we demonstrate that NaX zeolite functions as a high-performance membrane for blue energy generation. The NaX zeolite membrane achieves a power density of 21.27 W m⁻² under a 50-fold NaCl concentration gradient, exceeding the performance of state-of-the-art membranes under similar conditions. When tested under practical scenarios, it yields power densities of 29.1 W m⁻², 81.0 W m⁻², and 380.1 W m⁻² in the Red Sea/River, Dead Sea/River, and Qinghai Brine/River configurations, respectively. Notably, the membrane operates effectively in high alkaline conditions (~0.5 M NaOH) and selectively separates CO₃²⁻ from OH⁻ ions with a selectivity of 25. These results underscore zeolite membranes' potential for blue energy, opening further opportunities in this field. Blue energy from salinity gradients provides sustainable power. Here, authors show that NaX zeolite membranes deliver high power density for blue energy, outperforming conventional membranes and functioning effectively in challenging conditions, including high alkalinity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助自然白安采纳,获得10
1秒前
1秒前
2秒前
万能图书馆应助六线采纳,获得30
5秒前
6秒前
书蠹诗魔发布了新的文献求助10
6秒前
桐桐应助椰子水采纳,获得10
6秒前
852应助糊涂的大象采纳,获得10
6秒前
6秒前
解惑发布了新的文献求助10
7秒前
8秒前
linlin发布了新的文献求助10
11秒前
还单身的绮梅完成签到,获得积分10
11秒前
11秒前
学术辉发布了新的文献求助10
11秒前
12秒前
英勇代荷关注了科研通微信公众号
12秒前
春夏秋冬完成签到 ,获得积分20
13秒前
躺不平的洋仔完成签到,获得积分10
14秒前
17秒前
17秒前
不会起名发布了新的文献求助30
18秒前
18秒前
18秒前
李爱国应助LiBo采纳,获得10
19秒前
FashionBoy应助健忘的飞雪采纳,获得10
19秒前
21秒前
21秒前
太阳发布了新的文献求助30
22秒前
DrZ发布了新的文献求助10
23秒前
24秒前
25秒前
27秒前
27秒前
lyy发布了新的文献求助10
27秒前
打打应助解惑采纳,获得10
29秒前
29秒前
ding应助大学生采纳,获得10
31秒前
懒羊羊发布了新的文献求助10
31秒前
付佳佳发布了新的文献求助10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437