Theta oscillations optimize a speed-precision trade-off in phase coding neurons

海马结构 计算机科学 神经编码 编码(社会科学) 刺激(心理学) 神经科学 采样(信号处理) 算法 人工智能 数学 生物 电信 心理学 探测器 统计 心理治疗师
作者
Adrián F. Amil,Albert Albesa-González,Paul F. M. J. Verschure
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:20 (12): e1012628-e1012628 被引量:1
标识
DOI:10.1371/journal.pcbi.1012628
摘要

Theta-band oscillations (3–8 Hz) in the mammalian hippocampus organize the temporal structure of cortical inputs, resulting in a phase code that enables rhythmic input sampling for episodic memory formation and spatial navigation. However, it remains unclear what evolutionary pressures might have driven the selection of theta over higher-frequency bands that could potentially provide increased input sampling resolution. Here, we address this question by introducing a theoretical framework that combines the efficient coding and neural oscillatory sampling hypotheses, focusing on the information rate (bits/s) of phase coding neurons. We demonstrate that physiologically realistic noise levels create a trade-off between the speed of input sampling, determined by oscillation frequency, and encoding precision in rodent hippocampal neurons. This speed-precision trade-off results in a maximum information rate of ∼1–2 bits/s within the theta frequency band, thus confining the optimal oscillation frequency to the low end of the spectrum. We also show that this framework accounts for key hippocampal features, such as the preservation of the theta band along the dorsoventral axis despite physiological gradients, and the modulation of theta frequency and amplitude by running speed. Extending the analysis beyond the hippocampus, we propose that theta oscillations could also support efficient stimulus encoding in the visual cortex and olfactory bulb. More broadly, our framework lays the foundation for studying how system features, such as noise, constrain the optimal sampling frequencies in both biological and artificial brains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
开朗访曼发布了新的文献求助10
1秒前
2秒前
2秒前
livinglast发布了新的文献求助10
2秒前
赵云发布了新的文献求助10
3秒前
某科学的上条当麻完成签到,获得积分20
4秒前
摆渡人发布了新的文献求助10
4秒前
4秒前
chen完成签到,获得积分10
5秒前
JamesPei应助111采纳,获得10
5秒前
longer发布了新的文献求助10
5秒前
5秒前
清脆靳完成签到,获得积分10
6秒前
ai发布了新的文献求助10
7秒前
潦草小狗完成签到 ,获得积分10
7秒前
默默易梦应助vivian26采纳,获得10
7秒前
新手菜鸟完成签到,获得积分10
8秒前
Koi发布了新的文献求助10
9秒前
Chany完成签到 ,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
情怀应助JQM采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
asdfzxcv应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
王王应助科研通管家采纳,获得10
11秒前
王卫应助科研通管家采纳,获得10
11秒前
11秒前
wanci应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
asdfzxcv应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
BowieHuang应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720875
求助须知:如何正确求助?哪些是违规求助? 5262673
关于积分的说明 15292448
捐赠科研通 4870116
什么是DOI,文献DOI怎么找? 2615251
邀请新用户注册赠送积分活动 1565182
关于科研通互助平台的介绍 1522256