YOLOv8-AFA: A photovoltaic module fault detection method based on multi-scale feature fusion

光伏系统 计算机科学 联营 故障检测与隔离 瓶颈 人工智能 卷积神经网络 稳健性(进化) 模式识别(心理学) 数据挖掘 工程类 嵌入式系统 生物化学 化学 基因 电气工程 执行机构
作者
Wei Chen,Jinyu Lu,Tingting Pei,Guoshuai Yuan
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:47 (1): 657-676
标识
DOI:10.1080/15567036.2024.2443948
摘要

To tackle the issues of false positives and missed detections arising from inconsistent defect scales and complex, variable background textures in photovoltaic module fault detection, we propose a novel defect detection algorithm based on YOLOv8-AFA. Firstly, an adaptive bottleneck attention mechanism is introduced, which integrates convolutional operations with adaptive average pooling, effectively mitigating the interference caused by complex background textures in photovoltaic modules. Secondly, a multi-scale adaptive fusion mechanism is developed, combining adaptive average pooling, convolution, upsampling, and feature fusion to overcome the challenge of missed detections due to varying defect scales in photovoltaic module fault detection. Finally, an adaptive pooling fusion module is constructed, leveraging both adaptive max pooling and adaptive average pooling to enhance the model's detection capabilities across diverse environments. Experimental results demonstrate that the proposed YOLOv8-AFA algorithm achieves a mean average precision (mAP) of 91.5% in photovoltaic module fault detection tasks, representing a 2.2% improvement over the original YOLOv8 model. Moreover, the generalization capability of the algorithm was rigorously validated on the PASCAL VOC dataset, achieving a mean accuracy of 90.5%, surpassing other methods. This result demonstrates the improved algorithm's generalization performance, providing robust technical support for intelligent fault diagnosis in photovoltaic modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
章如豹发布了新的文献求助10
2秒前
正直姿发布了新的文献求助10
2秒前
2秒前
滴答滴发布了新的文献求助10
2秒前
慕青应助Archer采纳,获得10
2秒前
4秒前
4秒前
cass完成签到 ,获得积分10
4秒前
血红蛋白完成签到,获得积分10
5秒前
打打应助小艾采纳,获得10
5秒前
5秒前
6秒前
6秒前
Aaernan发布了新的文献求助10
7秒前
共享精神应助清爽灰狼采纳,获得10
7秒前
heyi发布了新的文献求助10
7秒前
秋惜灵完成签到,获得积分10
8秒前
俏皮觅风完成签到 ,获得积分10
8秒前
钟离完成签到,获得积分10
8秒前
nokoko完成签到 ,获得积分10
8秒前
SS1025861发布了新的文献求助10
8秒前
CodeCraft应助小趴蔡采纳,获得10
9秒前
熊i发布了新的文献求助10
11秒前
充电宝应助图灵桑采纳,获得10
11秒前
整齐的井完成签到,获得积分10
11秒前
乱咬人完成签到,获得积分10
12秒前
李健的粉丝团团长应助a_hu采纳,获得10
12秒前
SciGPT应助妮0001采纳,获得10
14秒前
Jasper应助gcc采纳,获得10
14秒前
14秒前
滴答滴完成签到,获得积分10
14秒前
芜湖起飞发布了新的文献求助80
15秒前
顾矜应助血红蛋白采纳,获得10
16秒前
17秒前
酷波er应助熊i采纳,获得10
17秒前
floraaa发布了新的文献求助30
17秒前
18秒前
酷波er应助不知道叫啥采纳,获得10
19秒前
19秒前
Sss完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542648
求助须知:如何正确求助?哪些是违规求助? 3120011
关于积分的说明 9341267
捐赠科研通 2818101
什么是DOI,文献DOI怎么找? 1549346
邀请新用户注册赠送积分活动 722106
科研通“疑难数据库(出版商)”最低求助积分说明 712944