Large language models enabled intelligent microstructure optimization and defects classification of welded titanium alloys

微观结构 焊接 材料科学 冶金 钛合金 计算机科学 合金
作者
Suyang Zhang,William Yi Wang,Xinzhao Wang,Gaonan Li,Yong Ren,Xingyu Gao,Feng Sun,Bin Tang,Haifeng Song,Jinshan Li
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
被引量:1
标识
DOI:10.20517/jmi.2024.64
摘要

The quick developments of artificial intelligence have brought tremendous attractive opportunities and changes to smart welding technology. In the present work, a novel model, ConvNeXt, which incorporates the advantages of convolutional neural networks (CNNs) and vision transformers (ViTs), has been designed to identify welding defects. The classification accuracy of the pre-trained ConvNeXt based on transfer learning method reaches as high as 99.52% after 500 iterations of training, while traditional CNNs of MobileNetV2 and ResNet34 achieve 85.94% and 93.41%, respectively. Moreover, the classification performance can be further improved through dataset optimization based on t-distributed stochastic neighbor embedding (t-SNE). In addition, arc geometrical features are added as input parameters for building a back propagation neural network to predict the formation of the weld seam, which has led to a reduction in the maximum prediction error for weld seam thickness from 0.8 to 0.6 mm. Furthermore, out of 28 sets of experimental parameters, only four sets result in errors exceeding 0.2 mm. It is worth noting that large language models (LLMs) are utilized to facilitate the automated programming for welding defect recognition, including ChatGPT 3.5, Bing Copilot, Claude3, and ERNIE Bot. LLM-aided automated programming technology is applied to develop image stitching programs, achieving unsupervised automatic stitching of multiple welding tissue images and obtaining clear and wide-field weld ones. These case studies of deep learning technologies and automated programming based on LLMs set up a solidified building block for smart welding defect recognition during non-equilibrium solidification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兰兰发布了新的文献求助10
1秒前
1秒前
yl完成签到,获得积分10
1秒前
kaka0934完成签到,获得积分10
2秒前
沐白发布了新的文献求助10
2秒前
高源发布了新的文献求助10
2秒前
DrY完成签到,获得积分20
2秒前
Lyven完成签到 ,获得积分10
2秒前
纪秋发布了新的文献求助10
2秒前
直率的青寒完成签到,获得积分10
2秒前
3秒前
万事顺意发布了新的文献求助10
3秒前
wxy发布了新的文献求助10
3秒前
rea完成签到,获得积分10
3秒前
Steven完成签到,获得积分10
3秒前
吴小苏完成签到,获得积分10
4秒前
ZYYZYY发布了新的文献求助30
4秒前
4秒前
4秒前
wwwu完成签到,获得积分10
4秒前
蜘猪侠发布了新的文献求助10
4秒前
科研通AI5应助烂漫的绿蝶采纳,获得10
4秒前
Gotyababy发布了新的文献求助10
5秒前
Yolo完成签到,获得积分10
5秒前
5秒前
Kenny发布了新的文献求助10
5秒前
5秒前
哪吒完成签到,获得积分20
5秒前
123466关注了科研通微信公众号
6秒前
oneday发布了新的文献求助10
6秒前
JIAYIWANG完成签到,获得积分20
6秒前
一直找不到文献完成签到 ,获得积分20
6秒前
量子星尘发布了新的文献求助10
7秒前
DrY发布了新的文献求助10
7秒前
123发布了新的文献求助10
8秒前
8秒前
领导范儿应助纪秋采纳,获得10
8秒前
小白一号完成签到,获得积分10
8秒前
8秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603838
求助须知:如何正确求助?哪些是违规求助? 4012374
关于积分的说明 12423535
捐赠科研通 3692896
什么是DOI,文献DOI怎么找? 2035955
邀请新用户注册赠送积分活动 1069072
科研通“疑难数据库(出版商)”最低求助积分说明 953559