Large language models enabled intelligent microstructure optimization and defects classification of welded titanium alloys

微观结构 焊接 材料科学 冶金 钛合金 计算机科学 合金
作者
Suyang Zhang,William Yi Wang,Xinzhao Wang,Gaonan Li,Yong Ren,Xingyu Gao,Feng Sun,Bin Tang,Haifeng Song,Jinshan Li
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
被引量:6
标识
DOI:10.20517/jmi.2024.64
摘要

The quick developments of artificial intelligence have brought tremendous attractive opportunities and changes to smart welding technology. In the present work, a novel model, ConvNeXt, which incorporates the advantages of convolutional neural networks (CNNs) and vision transformers (ViTs), has been designed to identify welding defects. The classification accuracy of the pre-trained ConvNeXt based on transfer learning method reaches as high as 99.52% after 500 iterations of training, while traditional CNNs of MobileNetV2 and ResNet34 achieve 85.94% and 93.41%, respectively. Moreover, the classification performance can be further improved through dataset optimization based on t-distributed stochastic neighbor embedding (t-SNE). In addition, arc geometrical features are added as input parameters for building a back propagation neural network to predict the formation of the weld seam, which has led to a reduction in the maximum prediction error for weld seam thickness from 0.8 to 0.6 mm. Furthermore, out of 28 sets of experimental parameters, only four sets result in errors exceeding 0.2 mm. It is worth noting that large language models (LLMs) are utilized to facilitate the automated programming for welding defect recognition, including ChatGPT 3.5, Bing Copilot, Claude3, and ERNIE Bot. LLM-aided automated programming technology is applied to develop image stitching programs, achieving unsupervised automatic stitching of multiple welding tissue images and obtaining clear and wide-field weld ones. These case studies of deep learning technologies and automated programming based on LLMs set up a solidified building block for smart welding defect recognition during non-equilibrium solidification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
知蜜10完成签到,获得积分10
1秒前
明亮夏旋完成签到 ,获得积分10
1秒前
lin发布了新的文献求助20
1秒前
2秒前
科研通AI5应助碧蓝铁身采纳,获得10
3秒前
SciGPT应助科研小废物采纳,获得10
3秒前
4秒前
酷波er应助yylfy采纳,获得10
5秒前
快乐咸鱼完成签到,获得积分10
5秒前
夏季完成签到,获得积分10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得150
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
七岁的那一年捉住那只蝉完成签到 ,获得积分10
6秒前
端庄的山蝶完成签到,获得积分10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
可爱的函函应助JoJo采纳,获得10
6秒前
Tourist应助科研通管家采纳,获得150
6秒前
大模型应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
情怀应助科研通管家采纳,获得10
7秒前
7秒前
小青椒应助科研通管家采纳,获得150
7秒前
changping应助科研通管家采纳,获得150
7秒前
SCI论文获得者完成签到 ,获得积分20
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
浮浮世世发布了新的文献求助30
7秒前
orixero应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得30
7秒前
完美世界应助科研通管家采纳,获得30
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
乐乐应助JUYIN采纳,获得10
7秒前
Orange应助科研通管家采纳,获得10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
8秒前
超级王国发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155371
求助须知:如何正确求助?哪些是违规求助? 4351063
关于积分的说明 13547192
捐赠科研通 4193867
什么是DOI,文献DOI怎么找? 2300162
邀请新用户注册赠送积分活动 1300091
关于科研通互助平台的介绍 1245111