Large language models enabled intelligent microstructure optimization and defects classification of welded titanium alloys

微观结构 焊接 材料科学 冶金 钛合金 计算机科学 合金
作者
Suyang Zhang,William Yi Wang,Xinzhao Wang,Gaonan Li,Yong Ren,Xingyu Gao,Feng Sun,Bin Tang,Haifeng Song,Jinshan Li
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
被引量:6
标识
DOI:10.20517/jmi.2024.64
摘要

The quick developments of artificial intelligence have brought tremendous attractive opportunities and changes to smart welding technology. In the present work, a novel model, ConvNeXt, which incorporates the advantages of convolutional neural networks (CNNs) and vision transformers (ViTs), has been designed to identify welding defects. The classification accuracy of the pre-trained ConvNeXt based on transfer learning method reaches as high as 99.52% after 500 iterations of training, while traditional CNNs of MobileNetV2 and ResNet34 achieve 85.94% and 93.41%, respectively. Moreover, the classification performance can be further improved through dataset optimization based on t-distributed stochastic neighbor embedding (t-SNE). In addition, arc geometrical features are added as input parameters for building a back propagation neural network to predict the formation of the weld seam, which has led to a reduction in the maximum prediction error for weld seam thickness from 0.8 to 0.6 mm. Furthermore, out of 28 sets of experimental parameters, only four sets result in errors exceeding 0.2 mm. It is worth noting that large language models (LLMs) are utilized to facilitate the automated programming for welding defect recognition, including ChatGPT 3.5, Bing Copilot, Claude3, and ERNIE Bot. LLM-aided automated programming technology is applied to develop image stitching programs, achieving unsupervised automatic stitching of multiple welding tissue images and obtaining clear and wide-field weld ones. These case studies of deep learning technologies and automated programming based on LLMs set up a solidified building block for smart welding defect recognition during non-equilibrium solidification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lulujiang完成签到 ,获得积分10
刚刚
Akim应助体贴的无色采纳,获得10
刚刚
一个刚刚完成签到,获得积分10
刚刚
吴淑明发布了新的文献求助10
刚刚
丘比特应助xzy采纳,获得10
刚刚
wanci应助呆萌菲音采纳,获得10
1秒前
Bruce完成签到,获得积分10
1秒前
MX001完成签到,获得积分10
1秒前
2秒前
大个应助普鲁卡因采纳,获得10
2秒前
Hello应助nezhaalicia采纳,获得10
2秒前
2秒前
苏silence发布了新的文献求助10
3秒前
4秒前
肌肉猛男完成签到,获得积分10
4秒前
领导范儿应助memorise采纳,获得30
4秒前
SciGPT应助龙江游侠采纳,获得10
4秒前
火星上的西牛完成签到,获得积分10
4秒前
qwdqwd完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
明理的蜗牛完成签到,获得积分10
6秒前
pharrah完成签到,获得积分10
6秒前
Qianyun完成签到,获得积分10
6秒前
6秒前
吴淑明完成签到,获得积分10
7秒前
clara完成签到,获得积分10
7秒前
喵喵发布了新的文献求助10
7秒前
7秒前
kosmos完成签到,获得积分10
7秒前
里苏特完成签到,获得积分10
7秒前
7秒前
qll完成签到,获得积分10
8秒前
读书娃儿完成签到,获得积分10
8秒前
8秒前
xue发布了新的文献求助10
8秒前
8秒前
艾席文完成签到,获得积分10
9秒前
陈开月完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017