Large language models enabled intelligent microstructure optimization and defects classification of welded titanium alloys

微观结构 焊接 材料科学 冶金 钛合金 计算机科学 合金
作者
Suyang Zhang,William Yi Wang,Xinzhao Wang,Gaonan Li,Yong Ren,Xingyu Gao,Feng Sun,Bin Tang,Haifeng Song,Jinshan Li
出处
期刊:Journal of materials informatics [OAE Publishing Inc.]
被引量:6
标识
DOI:10.20517/jmi.2024.64
摘要

The quick developments of artificial intelligence have brought tremendous attractive opportunities and changes to smart welding technology. In the present work, a novel model, ConvNeXt, which incorporates the advantages of convolutional neural networks (CNNs) and vision transformers (ViTs), has been designed to identify welding defects. The classification accuracy of the pre-trained ConvNeXt based on transfer learning method reaches as high as 99.52% after 500 iterations of training, while traditional CNNs of MobileNetV2 and ResNet34 achieve 85.94% and 93.41%, respectively. Moreover, the classification performance can be further improved through dataset optimization based on t-distributed stochastic neighbor embedding (t-SNE). In addition, arc geometrical features are added as input parameters for building a back propagation neural network to predict the formation of the weld seam, which has led to a reduction in the maximum prediction error for weld seam thickness from 0.8 to 0.6 mm. Furthermore, out of 28 sets of experimental parameters, only four sets result in errors exceeding 0.2 mm. It is worth noting that large language models (LLMs) are utilized to facilitate the automated programming for welding defect recognition, including ChatGPT 3.5, Bing Copilot, Claude3, and ERNIE Bot. LLM-aided automated programming technology is applied to develop image stitching programs, achieving unsupervised automatic stitching of multiple welding tissue images and obtaining clear and wide-field weld ones. These case studies of deep learning technologies and automated programming based on LLMs set up a solidified building block for smart welding defect recognition during non-equilibrium solidification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
琳琳完成签到,获得积分10
刚刚
听花开的声音完成签到,获得积分10
1秒前
zheya完成签到,获得积分20
2秒前
所所应助shun采纳,获得10
3秒前
kb发布了新的文献求助10
3秒前
科目三应助ze采纳,获得10
3秒前
Owen应助jcx采纳,获得10
3秒前
半夏完成签到,获得积分10
4秒前
爱吃马铃薯完成签到,获得积分10
4秒前
4秒前
mdbbs2021发布了新的文献求助20
4秒前
小马甲应助杜丽芳采纳,获得10
5秒前
Daniel2010完成签到,获得积分10
5秒前
hxx完成签到,获得积分10
6秒前
高贵煜祺发布了新的文献求助10
6秒前
6秒前
大模型应助听花开的声音采纳,获得10
7秒前
7秒前
Jasper应助缥缈的友琴采纳,获得10
8秒前
bolunxier完成签到,获得积分10
8秒前
你都至少信我八分吧完成签到 ,获得积分10
9秒前
无情发卡完成签到,获得积分10
9秒前
桐桐应助今晚打老虎采纳,获得10
9秒前
zyz953398531发布了新的文献求助10
9秒前
liao应助hxx采纳,获得30
9秒前
Singhi发布了新的文献求助10
10秒前
浮游应助ren采纳,获得10
10秒前
蔡佩翰发布了新的文献求助20
10秒前
橘子发布了新的文献求助10
10秒前
称心的依琴完成签到,获得积分10
10秒前
10秒前
zj发布了新的文献求助10
12秒前
大个应助XTT采纳,获得50
14秒前
Vanilla应助讨厌的十九岁采纳,获得20
15秒前
研友_LNMmW8发布了新的文献求助20
15秒前
16秒前
肥牛芋泥泥完成签到,获得积分10
16秒前
16秒前
兀拉拉完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002