Enhanced Sampling Simulations of RNA–Peptide Binding Using Deep Learning Collective Variables

采样(信号处理) 人工智能 计算生物学 核糖核酸 计算机科学 化学 心理学 生物 生物化学 电信 基因 探测器
作者
N. Sowjanya Kumari,Sonam Sonam,Tarak Karmakar
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01438
摘要

Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulation community because of their ability to sample long-time scale processes. However, a key challenge in implementing collective variable (CV)-based enhanced sampling methods is the selection of appropriate CVs that can distinguish the system's metastable states and, when biased, can effectively sample these states. This challenge is particularly acute when the binding of a flexible molecule to a conformationally rich host molecule is simulated, such as the binding of a peptide to an RNA. In such cases, a large number of CVs are required to capture the conformations of both the host and the guest as well as the binding process. Using such a large number of descriptors is impractical in any enhanced sampling simulation method. In our work, we used the recently developed deep targeted discriminant analysis (Deep-TDA) method to design CVs to study the binding of a cyclic peptide, L22, to a TAR RNA of HIV, which is a prototypical system. The Deep-TDA CV, obtained from a nonlinear combination of important contact pairs between the L22 peptide and the host RNA backbone atoms, along with the RNA apical loop RMSD as the second CV were used in the on-the-fly probability-based enhanced sampling (OPES) simulation to sample the reversible binding and unbinding of the L22 peptide to the TAR RNA target. The OPES simulation delineated the mechanism of peptide binding and unbinding to and from the RNA and enabled the calculation of the underlying free energy landscape. Our results demonstrate the potential of the Deep-TDA method for designing CVs to study complex biomolecular recognition processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Brian发布了新的文献求助10
2秒前
Coffey完成签到 ,获得积分10
2秒前
小猪少年呆呆完成签到 ,获得积分10
9秒前
Brian完成签到,获得积分20
13秒前
木维维完成签到,获得积分10
15秒前
烨枫晨曦完成签到,获得积分10
21秒前
33秒前
37秒前
清清褚褚完成签到,获得积分10
38秒前
MOOTEA发布了新的文献求助10
40秒前
FOOL完成签到,获得积分10
44秒前
fadungkang完成签到,获得积分20
52秒前
清清褚褚发布了新的文献求助10
54秒前
半柚应助hanzhiyuxing采纳,获得10
1分钟前
con完成签到 ,获得积分10
1分钟前
连牙蓝上了吗完成签到 ,获得积分10
1分钟前
MOOTEA发布了新的文献求助10
1分钟前
1分钟前
维生素c发布了新的文献求助10
1分钟前
阿星完成签到,获得积分10
1分钟前
yiren完成签到 ,获得积分10
1分钟前
谦谦神棍发布了新的文献求助10
1分钟前
EDDY完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
huangyao发布了新的文献求助10
1分钟前
marongzhi完成签到 ,获得积分10
1分钟前
领导范儿应助MOOTEA采纳,获得10
1分钟前
1分钟前
huangyao完成签到,获得积分10
1分钟前
1分钟前
瘦瘦的寒珊完成签到,获得积分10
1分钟前
MOOTEA发布了新的文献求助10
1分钟前
嗯哼应助科研通管家采纳,获得10
1分钟前
怕黑半仙应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3373454
求助须知:如何正确求助?哪些是违规求助? 2990624
关于积分的说明 8742487
捐赠科研通 2674430
什么是DOI,文献DOI怎么找? 1465227
科研通“疑难数据库(出版商)”最低求助积分说明 677752
邀请新用户注册赠送积分活动 669232