亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction and Explanation of Properties in Multicomponent Polyurethane Elastomers: Integrating Molecular Dynamics and Machine Learning

弹性体 分子动力学 聚氨酯 高分子科学 材料科学 高分子化学 计算机科学 化学 复合材料 计算化学
作者
Yujiang Meng,Yaling Lin,Anqiang Zhang
出处
期刊:Macromolecules [American Chemical Society]
标识
DOI:10.1021/acs.macromol.4c02559
摘要

Establishing quantitative connections among the chemical composition, molecular structure, and macroscopic properties of multicomponent polyurethane elastomers remains a challenging task. Molecular dynamics (MD) has been extensively utilized in the study of various materials and serves as a crucial tool for exploring the relationship between structure and properties. However, the intricate modeling process and lengthy computation times associated with the MD method complicate the attainment of complex combinatorial results for the various components of polyurethane elastomers. Machine learning (ML) offers a solution by integrating and analyzing existing data, along with the capability to predict new outcomes. Consequently, we combine MD and ML methods to conduct a comprehensive investigation of multicomponent polyurethane elastomers. MD simulations indicate the presence of various types of hydrogen bonds within the elastic matrix of polyurethane, and the strong hydrogen bonds formed in the hard segments significantly affect the tensile properties of material. While the incorporation of long molecular chains in the soft segments enhances the material's flexibility, it simultaneously diminishes its tensile strength. Feature engineering techniques, including parametric representation and feature screening of the MD model, were employed to create a data set suitable for ML applications. The application of the interpretable ML method has demonstrated that the number of hydrogen bonds in the hard segment is regulated by the hydrogen bond donor and acceptor, while the rotatable bonds in the soft segment are the primary characteristics contributing to the material's flexibility and are also key factors that regulate the number of free hydrogen bonds. This integration of MD and ML methods not only enhances predictive capabilities for novel polyurethane elastomers but also facilitates quantitative analysis of how microstructural characteristics affect macroscopic properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助200
18秒前
量子星尘发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
38秒前
量子星尘发布了新的文献求助10
49秒前
量子星尘发布了新的文献求助50
1分钟前
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
坚强白凝发布了新的文献求助10
1分钟前
JamesPei应助坚强白凝采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
俊逸吐司完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助30
2分钟前
jia完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
繁荣的心情完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助30
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188