Hyperspectral Method Integrated with Machine Learning to Predict the Acidity and Soluble Solid Content Values of Kiwi Fruit During the Storage Period

高光谱成像 几维鸟 食品科学 化学 环境科学 计算机科学 人工智能
作者
Amir Mansourialam,Mansour Rasekh,Sina Ardabili,M Dadkhah,Amir Mosavi
出处
期刊:Acta Technologica Agriculturae [De Gruyter Open]
卷期号:27 (4): 187-193 被引量:1
标识
DOI:10.2478/ata-2024-0025
摘要

Abstract Non-destructive evaluation is advancing in examining the properties of fruits. Kiwi fruit stands out as one of the popular fruits globally. Due to the influence of various environmental factors and storage conditions, diligent checking and storage of this fruit are essential. Therefore, monitoring changes in its properties during storage in cold storage facilities is crucial. One nondestructive method utilised in recent years to investigate changes in fruit texture is the hyperspectral method. This study uses the support vector machine (SVM) method to assess hyperspectral method‘s effectiveness in examining property changes in four kiwi varieties during storage in addition to predicting the properties such as acidity and soluble solid content. The evaluation of the predictive machine learning model revealed an accuracy of 95% in predicting acidity and soluble solid content (SSC) changes in kiwi fruit during storage. Further, investigations found that the support vector machine method provided relatively lower accuracy and sensitivity in identifying product variety during storage, with an average accuracy ranging from about 91% to 94%. These findings suggest that integrating machine learning methods with outputs from techniques like hyperspectral imaging enhances the non-destructive detection capability of fruits. This integration transforms obtained results into practical outcomes, serving as an interface between software and hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸王龙完成签到,获得积分10
2秒前
无花果应助马上毕业采纳,获得10
4秒前
刘潼潼完成签到,获得积分10
6秒前
=.=完成签到,获得积分10
6秒前
7秒前
酷波er应助尊敬的芷卉采纳,获得10
8秒前
9秒前
科研通AI2S应助821108pan采纳,获得10
9秒前
无奈抽屉完成签到,获得积分10
9秒前
JL完成签到,获得积分10
10秒前
美少女壮士完成签到,获得积分10
12秒前
情红锐完成签到,获得积分10
12秒前
卓聪健发布了新的文献求助10
12秒前
14秒前
王鹏喆完成签到 ,获得积分10
14秒前
雾蓝完成签到,获得积分10
16秒前
李爱国应助美少女壮士采纳,获得10
16秒前
un完成签到,获得积分10
16秒前
17秒前
17秒前
小蘑菇应助糊涂的MJ采纳,获得10
18秒前
王鹏喆关注了科研通微信公众号
18秒前
马上毕业发布了新的文献求助10
18秒前
液氧发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
小吴同志发布了新的文献求助10
21秒前
23秒前
废话鱼完成签到 ,获得积分10
23秒前
24秒前
du关闭了du文献求助
25秒前
量子星尘发布了新的文献求助10
26秒前
博修发布了新的文献求助10
26秒前
jiachun完成签到,获得积分10
26秒前
Jasper应助单薄的南蕾采纳,获得10
27秒前
30秒前
30秒前
31秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961059
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135400
捐赠科研通 3239738
什么是DOI,文献DOI怎么找? 1790416
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150