Hyperspectral Method Integrated with Machine Learning to Predict the Acidity and Soluble Solid Content Values of Kiwi Fruit During the Storage Period

高光谱成像 几维鸟 食品科学 化学 环境科学 计算机科学 人工智能
作者
Amir Mansourialam,Mansour Rasekh,Sina Ardabili,M Dadkhah,Amir Mosavi
出处
期刊:Acta Technologica Agriculturae [De Gruyter]
卷期号:27 (4): 187-193 被引量:1
标识
DOI:10.2478/ata-2024-0025
摘要

Abstract Non-destructive evaluation is advancing in examining the properties of fruits. Kiwi fruit stands out as one of the popular fruits globally. Due to the influence of various environmental factors and storage conditions, diligent checking and storage of this fruit are essential. Therefore, monitoring changes in its properties during storage in cold storage facilities is crucial. One nondestructive method utilised in recent years to investigate changes in fruit texture is the hyperspectral method. This study uses the support vector machine (SVM) method to assess hyperspectral method‘s effectiveness in examining property changes in four kiwi varieties during storage in addition to predicting the properties such as acidity and soluble solid content. The evaluation of the predictive machine learning model revealed an accuracy of 95% in predicting acidity and soluble solid content (SSC) changes in kiwi fruit during storage. Further, investigations found that the support vector machine method provided relatively lower accuracy and sensitivity in identifying product variety during storage, with an average accuracy ranging from about 91% to 94%. These findings suggest that integrating machine learning methods with outputs from techniques like hyperspectral imaging enhances the non-destructive detection capability of fruits. This integration transforms obtained results into practical outcomes, serving as an interface between software and hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ping完成签到 ,获得积分10
1秒前
seasonweng完成签到,获得积分10
1秒前
1秒前
lucilleshen完成签到,获得积分10
1秒前
陈居居发布了新的文献求助10
3秒前
朱老二发布了新的文献求助10
4秒前
4秒前
4秒前
honphyjiang发布了新的文献求助10
4秒前
今后应助RNAPW采纳,获得10
4秒前
笃定发布了新的文献求助10
4秒前
4秒前
超帅飞松完成签到,获得积分10
4秒前
小刺猬完成签到,获得积分10
5秒前
seasonweng发布了新的文献求助10
5秒前
慢慢发布了新的文献求助10
6秒前
lh完成签到,获得积分10
6秒前
CatSYL完成签到 ,获得积分10
7秒前
夹心脆菇完成签到,获得积分10
7秒前
7秒前
咩咩咩完成签到,获得积分20
8秒前
模糊中正应助善良傲柏采纳,获得30
8秒前
徐徐徐徐发布了新的文献求助10
8秒前
9秒前
和谐白云发布了新的文献求助10
9秒前
舒心白玉发布了新的文献求助10
9秒前
10秒前
烟花应助忘记明天采纳,获得10
10秒前
10秒前
11秒前
NexusExplorer应助陈居居采纳,获得10
11秒前
吃零食吃不下饭完成签到,获得积分10
11秒前
万能图书馆应助。.。采纳,获得10
11秒前
11秒前
土豆完成签到,获得积分10
12秒前
12秒前
wjr完成签到,获得积分20
12秒前
12秒前
可爱的函函应助小炒肉采纳,获得10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469301
求助须知:如何正确求助?哪些是违规求助? 3062350
关于积分的说明 9078786
捐赠科研通 2752698
什么是DOI,文献DOI怎么找? 1510579
科研通“疑难数据库(出版商)”最低求助积分说明 697909
邀请新用户注册赠送积分活动 697828