O-GlcNAcylation-Related Genes Mediated Tumor Microenvironment Characteristics and Prediction of Immunotherapy Response in Gastric Cancer

免疫疗法 肿瘤微环境 癌症 癌症免疫疗法 癌症研究 基因 生物 计算生物学 肿瘤科 医学 遗传学
作者
Weidong Wang,Xi Lü,Chengjun Zhu,Jie Li,Yue Liu,Zhijia Yao,Xiaolin Li
出处
期刊:Acta Biochimica et Biophysica Sinica [Oxford University Press]
标识
DOI:10.3724/abbs.2024222
摘要

We aim to identify molecular clusters related to O-GlcNAcylation and establish a novel scoring system for predicting prognosis and immunotherapy efficacy in patients with gastric cancer (GC). The transcriptomic and clinical data are obtained from XENA-UCSC and GEO databases. The O-GlcNAcylation-related genes are obtained from the GSEA database. Consensus clustering analysis is employed to identify O-GlcNAcylation-related molecular clusters, and principal component analysis (PCA) is utilized to develop a novel prognostic scoring system for predicting GC outcomes and immunotherapy efficacy. The prognostic accuracy of the scoring system is assessed across five real-world cohorts. The biological function of actin alpha 2, smooth muscle (ACTA2) in GC is determined through experimental verification. Using 34 O-GlcNAcylation-related genes associated with prognosis in GC patients, these individuals are divided into two distinct subgroups characterized by different outcomes, tumor microenvironment profiles, and clinical case characteristics. The DEGs between the two subgroups are subsequently used to further divide the GC patients into two subgroups by consensus cluster analysis. PCA is used to construct a prognostic scoring system, which reveal that patients in the low-score subgroup have a better prognosis and greater benefit from immunotherapy. The accuracy of the scoring system is confirmed through validation in a cohort of patients receiving immunotherapy in the real world. ACTA2 promotes proliferation and inhibits apoptosis in GC cells. These findings suggest that we successfully establish molecular clusters associated with O-GlcNAcylation and develop a scoring system that demonstrates strong performance in predicting the prognosis of patients with GC and the effect of immunotherapy interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助顺心的翠丝采纳,获得10
刚刚
终梦完成签到,获得积分10
1秒前
Owen应助小杨采纳,获得10
1秒前
CR7应助lmh采纳,获得20
1秒前
1秒前
深情安青应助不散的和弦采纳,获得10
1秒前
MY发布了新的文献求助10
2秒前
阿罗完成签到,获得积分20
2秒前
CR完成签到 ,获得积分10
2秒前
2秒前
迟梨完成签到,获得积分10
2秒前
2秒前
Fjj完成签到,获得积分10
3秒前
畅快的寄松完成签到,获得积分10
3秒前
朴素的无招完成签到 ,获得积分10
3秒前
4秒前
HH发布了新的文献求助30
4秒前
4秒前
4秒前
庄小鱼完成签到,获得积分10
4秒前
5秒前
摆烂fish完成签到,获得积分10
6秒前
袁地镜发布了新的文献求助60
6秒前
小田睡不醒完成签到,获得积分10
6秒前
6秒前
6秒前
FashionBoy应助maodou采纳,获得10
7秒前
zongzi12138完成签到,获得积分0
7秒前
Yeyuntian发布了新的文献求助10
7秒前
Purplesky完成签到,获得积分10
8秒前
流风回雪完成签到,获得积分20
8秒前
wanci应助博慧采纳,获得10
8秒前
li完成签到,获得积分10
9秒前
9秒前
张旭卓完成签到,获得积分10
9秒前
DrKe完成签到,获得积分10
9秒前
灵巧晓山完成签到,获得积分10
10秒前
可爱的函函应助MY采纳,获得10
10秒前
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009167
求助须知:如何正确求助?哪些是违规求助? 3549013
关于积分的说明 11300491
捐赠科研通 3283494
什么是DOI,文献DOI怎么找? 1810370
邀请新用户注册赠送积分活动 886146
科研通“疑难数据库(出版商)”最低求助积分说明 811259