Global Assessment of Atmospheric Forcing Uncertainties in The Common Land Model 2024 Simulations

强迫(数学) 环境科学 气候学 大气科学 大气模式 气象学 地理 地质学
作者
Fan Bai,Zhongwang Wei,Nan Wei,Xingjie Lu,Hua Yuan,Shupeng Zhang,Shaofeng Liu,Yonggen Zhang,Xueyan Li,Yongjiu Dai
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:129 (23)
标识
DOI:10.1029/2024jd041520
摘要

Abstract Offline land surface models (LSMs) require atmospheric forcing data sets for simulating water, energy, and biogeochemical fluxes. However, available forcing data sets remain highly uncertain and can introduce additional differences in LSM simulations. This study explored the impact of various forcing data sets, ranging from widely used to newly developed, on hydrological simulations using the Common Land Model 2024 (CoLM2024). We conducted 12 global experiments using different forcing data sets to force CoLM2024. We evaluated the model's performance against plot‐scale observations and globally gridded reference data. We examined the uncertainties in forcings and their impact on output variables such as latent heat, sensible heat, net radiation, and total runoff. Globally, precipitation has the highest degree of uncertainty at 4.4%. The forcing uncertainties propagate to the model simulations and cause significant differences in simulated variables. Runoff uncertainty is about 15.7% globally, with a greater impact in low latitudes. Our evaluation shows that the newly developed data sets, such as CRUJRA and ERA5LAND, generally outperform the others. However, the optimal forcing data set varies depending on the variable of interest and the targeted region. Partial Least Squares Regression analysis reveals that different simulated variables are associated with dominant forcing variables, highlighting the importance of selecting forcing data sets for specific applications and regions. This study confirms the importance of improving the quality and consistency of meteorological data. This would help reduce simulation biases and guide the improvement of the model structure and parameterization of CoLM2024.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助Weilp采纳,获得10
1秒前
古月发布了新的文献求助10
1秒前
woxiangbiye发布了新的文献求助10
2秒前
ACD发布了新的文献求助10
2秒前
桐桐应助whx采纳,获得30
2秒前
3秒前
远洪发布了新的文献求助10
4秒前
沈言应助赤侯采纳,获得10
4秒前
5秒前
咲韶完成签到,获得积分10
6秒前
7秒前
SciGPT应助kwb采纳,获得10
7秒前
天才小熊猫完成签到,获得积分10
7秒前
Francis_完成签到,获得积分10
7秒前
kenny完成签到,获得积分10
8秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
zl发布了新的文献求助10
13秒前
13秒前
hyhyhyhy发布了新的文献求助10
14秒前
JT发布了新的文献求助10
14秒前
获奖感言完成签到,获得积分10
14秒前
15秒前
15秒前
隐形曼青应助malistm采纳,获得10
16秒前
梨理栗完成签到,获得积分10
16秒前
廾匸发布了新的文献求助10
16秒前
飘逸的虔发布了新的文献求助10
18秒前
八宝周发布了新的文献求助10
19秒前
kwb发布了新的文献求助10
20秒前
20秒前
20秒前
浅悠悠发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310147
求助须知:如何正确求助?哪些是违规求助? 2943193
关于积分的说明 8512994
捐赠科研通 2618403
什么是DOI,文献DOI怎么找? 1431061
科研通“疑难数据库(出版商)”最低求助积分说明 664359
邀请新用户注册赠送积分活动 649540