Incomplete Contrastive Multi-View Clustering with High-Confidence Guiding

聚类分析 人工智能 计算机科学
作者
Guoqing Chao,Yi Jiang,Dianhui Chu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (10): 11221-11229
标识
DOI:10.1609/aaai.v38i10.29000
摘要

Incomplete multi-view clustering becomes an important research problem, since multi-view data with missing values are ubiquitous in real-world applications. Although great efforts have been made for incomplete multi-view clustering, there are still some challenges: 1) most existing methods didn't make full use of multi-view information to deal with missing values; 2) most methods just employ the consistent information within multi-view data but ignore the complementary information; 3) For the existing incomplete multi-view clustering methods, incomplete multi-view representation learning and clustering are treated as independent processes, which leads to performance gap. In this work, we proposed a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC). Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem. Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information while instance-level contrastive learning for latent representation is designed to employ the consistent information. Thirdly, an end-to-end framework is proposed to integrate multi-view missing values handling, multi-view representation learning and clustering assignment for joint optimization. Experiments compared with state-of-the-art approaches demonstrated the effectiveness and superiority of our method. Our code is publicly available at https://github.com/liunian-Jay/ICMVC. The version with supplementary material can be found at http://arxiv.org/abs/2312.08697.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喵小琪完成签到,获得积分10
刚刚
刚刚
Bacian完成签到 ,获得积分10
刚刚
夕荀发布了新的文献求助10
1秒前
郭晓峰完成签到,获得积分10
1秒前
rebeccahu应助Amadeus采纳,获得10
2秒前
舒服的井给舒服的井的求助进行了留言
2秒前
今后应助正直灵雁采纳,获得10
3秒前
丁长春完成签到,获得积分10
4秒前
4秒前
隐形曼青应助如意的秋白采纳,获得10
5秒前
5秒前
现代的战斗机完成签到,获得积分10
5秒前
马鲛完成签到,获得积分10
6秒前
8R60d8应助宫冷雁采纳,获得10
7秒前
honey完成签到,获得积分10
7秒前
哈喽沃德完成签到,获得积分10
7秒前
Smilingrock完成签到,获得积分20
7秒前
8秒前
小何完成签到,获得积分10
8秒前
guozi完成签到,获得积分10
8秒前
9秒前
9秒前
xiaoyi完成签到 ,获得积分10
9秒前
huahua完成签到 ,获得积分10
9秒前
马鲛发布了新的文献求助10
9秒前
10秒前
HEIKU应助自由的石头采纳,获得10
11秒前
呜啦啦完成签到,获得积分10
11秒前
11秒前
骤雨红尘发布了新的文献求助10
11秒前
土豪的易文完成签到,获得积分10
11秒前
xiao完成签到,获得积分10
12秒前
积土成山发布了新的文献求助20
13秒前
la发布了新的文献求助10
14秒前
14秒前
明理思真完成签到,获得积分10
14秒前
14秒前
lic完成签到,获得积分10
14秒前
ZhaoYu完成签到,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450630
求助须知:如何正确求助?哪些是违规求助? 3046125
关于积分的说明 9004768
捐赠科研通 2734794
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693385
邀请新用户注册赠送积分活动 691542