Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 计算机安全 语言学 集合(抽象数据类型)
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好吃发布了新的文献求助10
1秒前
机智的凝丝完成签到 ,获得积分10
2秒前
lilymozi发布了新的文献求助10
2秒前
xiaoqf发布了新的文献求助10
3秒前
MOOOO完成签到,获得积分10
3秒前
xin发布了新的文献求助10
3秒前
勤劳亦瑶完成签到,获得积分20
5秒前
斯文败类应助兴奋的万声采纳,获得30
5秒前
chanhow完成签到,获得积分10
5秒前
rainsy发布了新的文献求助10
6秒前
桐桐应助于沁冉采纳,获得30
6秒前
SSS完成签到,获得积分20
7秒前
7秒前
李爱国应助Lucy采纳,获得10
8秒前
一颗葡萄完成签到 ,获得积分10
9秒前
chanhow发布了新的文献求助10
9秒前
10秒前
10秒前
冬日空虚应助小马哥采纳,获得10
11秒前
小二郎应助勤劳亦瑶采纳,获得10
12秒前
田T发布了新的文献求助10
12秒前
慌慌完成签到 ,获得积分10
13秒前
MOOOO发布了新的文献求助10
13秒前
16秒前
SSS发布了新的文献求助10
16秒前
16秒前
俏皮不可完成签到,获得积分10
16秒前
16秒前
残剑月应助香香采纳,获得10
18秒前
薯条发布了新的文献求助10
18秒前
fsznc完成签到 ,获得积分0
19秒前
量子星尘发布了新的文献求助10
19秒前
清风在侧发布了新的文献求助10
20秒前
20秒前
俏皮不可发布了新的文献求助10
20秒前
陈民完成签到,获得积分20
20秒前
Jasper应助加油kiki采纳,获得10
21秒前
22秒前
小马甲应助自由的笑容采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601539
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847124
捐赠科研通 4681263
什么是DOI,文献DOI怎么找? 2539418
邀请新用户注册赠送积分活动 1506305
关于科研通互助平台的介绍 1471297