亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 计算机安全 语言学 集合(抽象数据类型)
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier BV]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪白的面包完成签到 ,获得积分10
4秒前
杨无敌完成签到 ,获得积分10
9秒前
April完成签到 ,获得积分0
15秒前
田様应助耶耶采纳,获得10
16秒前
19秒前
20秒前
安详的芷发布了新的文献求助10
24秒前
Nina完成签到 ,获得积分10
27秒前
wuxixi发布了新的文献求助10
28秒前
754完成签到,获得积分10
30秒前
失眠的香蕉完成签到 ,获得积分10
33秒前
34秒前
小王发布了新的文献求助10
38秒前
TRISTE完成签到 ,获得积分10
40秒前
oldblack完成签到,获得积分10
45秒前
充电宝应助njxray采纳,获得10
45秒前
小枣完成签到 ,获得积分10
46秒前
小王完成签到,获得积分10
51秒前
hi_traffic完成签到,获得积分10
51秒前
LYF完成签到 ,获得积分10
51秒前
紧张的水蜜桃关注了科研通微信公众号
58秒前
1分钟前
Layover完成签到 ,获得积分10
1分钟前
归尘发布了新的文献求助10
1分钟前
wuxixi完成签到,获得积分20
1分钟前
我是老大应助科研通管家采纳,获得10
1分钟前
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
搞怪腊肠发布了新的文献求助10
1分钟前
1分钟前
1分钟前
耶耶发布了新的文献求助10
1分钟前
贪玩的蝴蝶完成签到 ,获得积分10
1分钟前
bbbabo发布了新的文献求助10
1分钟前
Owen应助耶耶采纳,获得10
1分钟前
1分钟前
魔幻大有完成签到 ,获得积分10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144916
捐赠科研通 3242088
什么是DOI,文献DOI怎么找? 1791737
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622