Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 集合(抽象数据类型) 语言学 计算机安全
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
不冬眠发布了新的文献求助10
刚刚
悦耳黑夜完成签到 ,获得积分10
2秒前
2秒前
GPTea应助123采纳,获得20
2秒前
upupup完成签到,获得积分10
3秒前
3秒前
玉山发布了新的文献求助10
3秒前
3秒前
冯雨宁完成签到,获得积分10
3秒前
5秒前
木木夕发布了新的文献求助10
5秒前
5秒前
5秒前
liss完成签到 ,获得积分10
6秒前
7秒前
7秒前
桐桐应助101采纳,获得30
7秒前
7秒前
7秒前
yu发布了新的文献求助10
8秒前
LC完成签到,获得积分10
8秒前
ZhouZhou发布了新的文献求助10
8秒前
8秒前
kiide完成签到,获得积分10
9秒前
10秒前
11秒前
wangli发布了新的文献求助10
12秒前
ppprotein发布了新的文献求助10
12秒前
zx发布了新的文献求助10
13秒前
上官若男应助阔达的冷霜采纳,获得10
13秒前
Owen应助不冬眠采纳,获得10
13秒前
SCL发布了新的文献求助10
13秒前
研友_nPoXoL发布了新的文献求助10
13秒前
14秒前
14秒前
koi完成签到,获得积分20
15秒前
FashionBoy应助小p采纳,获得30
15秒前
dmm完成签到,获得积分10
15秒前
ZHG完成签到,获得积分10
16秒前
Q11发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492432
求助须知:如何正确求助?哪些是违规求助? 4590523
关于积分的说明 14430879
捐赠科研通 4522998
什么是DOI,文献DOI怎么找? 2478115
邀请新用户注册赠送积分活动 1463158
关于科研通互助平台的介绍 1435830