Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 计算机安全 语言学 集合(抽象数据类型)
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2鱼发布了新的文献求助10
1秒前
SYLH应助畅快的谷梦采纳,获得10
2秒前
mingjie发布了新的文献求助10
2秒前
Akim应助克里斯就是逊啦采纳,获得10
2秒前
越幸运完成签到 ,获得积分10
3秒前
young完成签到 ,获得积分10
3秒前
天天快乐应助成就的烧鹅采纳,获得10
4秒前
cora发布了新的文献求助10
4秒前
诚心的不斜完成签到,获得积分10
5秒前
bono完成签到 ,获得积分10
5秒前
5秒前
6秒前
又要起名字关注了科研通微信公众号
7秒前
可爱的函函应助su采纳,获得10
7秒前
8秒前
澳澳完成签到,获得积分10
9秒前
9秒前
善学以致用应助纯真抽屉采纳,获得10
10秒前
10秒前
笑笑发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
Hello应助cora采纳,获得10
13秒前
汉唐精彩完成签到,获得积分10
14秒前
14秒前
15秒前
田茂青完成签到,获得积分10
15秒前
damian发布了新的文献求助30
15秒前
15秒前
聪明芒果完成签到,获得积分10
15秒前
Vvvvvvv应助虫二先生采纳,获得10
15秒前
西大研究生完成签到 ,获得积分10
15秒前
16秒前
16秒前
呆呆完成签到,获得积分10
16秒前
左一酱完成签到 ,获得积分10
17秒前
平淡南霜发布了新的文献求助10
17秒前
Sweet关注了科研通微信公众号
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794