Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 集合(抽象数据类型) 语言学 计算机安全
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
随机发布了新的文献求助30
4秒前
华仔应助su采纳,获得10
5秒前
量子星尘发布了新的文献求助10
7秒前
彪壮的幻丝完成签到 ,获得积分0
7秒前
聪明藏今完成签到,获得积分10
11秒前
11秒前
12秒前
小木虫发布了新的文献求助10
14秒前
15秒前
16秒前
天才小仙女完成签到,获得积分10
16秒前
18秒前
小胖子发布了新的文献求助10
18秒前
LDL完成签到 ,获得积分10
18秒前
19秒前
zac2023完成签到,获得积分10
20秒前
奥特曼发布了新的文献求助10
20秒前
Akim应助QinQin采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
科研通AI2S应助淡淡书白采纳,获得10
21秒前
22秒前
ayeben发布了新的文献求助10
22秒前
su完成签到,获得积分10
23秒前
23秒前
无极微光应助CICI采纳,获得20
25秒前
青云发布了新的文献求助10
25秒前
26秒前
柒玥发布了新的文献求助10
27秒前
27秒前
杨秋月完成签到,获得积分10
28秒前
30秒前
欣欣发布了新的文献求助10
30秒前
30秒前
30秒前
愉快的听枫完成签到,获得积分10
31秒前
QinQin发布了新的文献求助10
31秒前
33秒前
泽松应助科研通管家采纳,获得10
33秒前
wanci应助科研通管家采纳,获得10
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742835
求助须知:如何正确求助?哪些是违规求助? 5410665
关于积分的说明 15345946
捐赠科研通 4883896
什么是DOI,文献DOI怎么找? 2625419
邀请新用户注册赠送积分活动 1574229
关于科研通互助平台的介绍 1531192