Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 计算机安全 语言学 集合(抽象数据类型)
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渣渣一个完成签到,获得积分10
1秒前
喵叽完成签到,获得积分10
1秒前
1秒前
苹果飞绿完成签到,获得积分10
1秒前
lxk666完成签到,获得积分10
1秒前
月儿完成签到,获得积分10
2秒前
ayao完成签到,获得积分10
2秒前
3秒前
songjw完成签到,获得积分20
3秒前
柚仝完成签到,获得积分10
3秒前
红泥小火炉完成签到,获得积分10
3秒前
老薛完成签到,获得积分10
4秒前
无心的胡萝卜完成签到,获得积分10
4秒前
橘子猫发布了新的文献求助10
4秒前
nj发布了新的文献求助10
4秒前
csatsd发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
keyant应助等待的觅珍采纳,获得50
7秒前
小糊涂完成签到 ,获得积分10
9秒前
9秒前
Bettye发布了新的文献求助10
9秒前
汉堡包应助糖糖采纳,获得10
9秒前
Ruoyu完成签到,获得积分10
9秒前
乐易天完成签到,获得积分10
11秒前
Ruoyu发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
危机的冷风完成签到,获得积分20
13秒前
14秒前
14秒前
14秒前
15秒前
共享精神应助qinglingdao采纳,获得10
16秒前
17秒前
共享精神应助开放菀采纳,获得10
18秒前
不配.应助咸蛋黄巧克力采纳,获得10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143821
求助须知:如何正确求助?哪些是违规求助? 2795450
关于积分的说明 7815080
捐赠科研通 2451485
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419