Hybrid semantics-based vulnerability detection incorporating a Temporal Convolutional Network and Self-attention Mechanism

计算机科学 卷积神经网络 深度学习 人工智能 脆弱性(计算) 编码(集合论) 特征(语言学) 源代码 构造(python库) 机器学习 语义学(计算机科学) 模式识别(心理学) 人工神经网络 数据挖掘 程序设计语言 哲学 集合(抽象数据类型) 语言学 计算机安全
作者
Jinfu Chen,Weijia Wang,Bo Liu,Saihua Cai,Dave Towey,Shengran Wang
出处
期刊:Information & Software Technology [Elsevier]
卷期号:171: 107453-107453 被引量:5
标识
DOI:10.1016/j.infsof.2024.107453
摘要

Desirable characteristics in vulnerability-detection (VD) systems (VDSs) include both good detection capability (high accuracy, low false positive rate, low false negative rate, etc.) and low time overheads. The widely used VDSs based on models such as Recurrent Neural Networks (RNNs) have some problems, such as low time efficiency, failing to learn the vulnerability features better, and insufficent amounts of vulnerability features. Therefore, it is very important to construct an automatic detection model with high detection accuracy. This paper reports on training based on the source code to analyze and learn from the code's patterns and structures by deep-learning techniques to generate an efficient VD model that does not require manual feature design. We propose a software VD model based on multi-feature fusion and deep neural networks called AIdetectorX-SP. It first uses a Temporal Convolutional Network (TCN) and adds a Self-attention Mechanism (SaM) to the TCN to build a model for extracting vulnerability logic features, then transforms the source code into an image input to a Convolutional Neural Network (CNN) to extract structural and semantic information. Finally, we use feature-fusion technology to design and implement an improved deep-learning-based VDS, called AIdetectorX Sequence with Picturization (AIdetectorX-SP). We report on experiments conducted using publicly-available and widely-used datasets to evaluate the effectiveness of AIdetectorX-SP, with results indicating that AIdetectorX-SP is an effective VDS; that the combination of TCN and SaM can effectively extract vulnerability logic features; and that the pictorial code can extract code structure features, which can further improve the VD capability. In this paper, we propose a novel detection model for software vulnerability based on TCNs, SaM, and software picturization. The proposed model solves some shortcomings and limitations of existing VDSs, and obtains a high software-VD accuracy with a high degree of stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻唯雪完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
哚圆圆发布了新的文献求助10
1秒前
2秒前
tianquanbi发布了新的文献求助10
2秒前
李爱国应助eywct采纳,获得10
2秒前
3秒前
3秒前
CipherSage应助熊国开采纳,获得10
3秒前
Sweet完成签到 ,获得积分10
3秒前
gzslwddhjx发布了新的文献求助10
4秒前
Islet发布了新的文献求助10
4秒前
5秒前
5秒前
李爱国应助王雪儿哈哈哈采纳,获得10
6秒前
SciGPT应助llll采纳,获得10
6秒前
8秒前
8秒前
8秒前
8秒前
晚上吃什么完成签到,获得积分10
8秒前
ChemMa发布了新的文献求助10
9秒前
丫丫发布了新的文献求助10
9秒前
易安发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
笨笨忘幽发布了新的文献求助10
11秒前
窦文涛完成签到,获得积分10
11秒前
11秒前
完美世界应助liuying采纳,获得10
12秒前
13秒前
THJJ完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
云赵完成签到,获得积分10
14秒前
斯文败类应助易安采纳,获得10
14秒前
14秒前
CWNU_HAN应助jyk采纳,获得30
15秒前
高天雨发布了新的文献求助20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785120
求助须知:如何正确求助?哪些是违规求助? 5686059
关于积分的说明 15466834
捐赠科研通 4914228
什么是DOI,文献DOI怎么找? 2645117
邀请新用户注册赠送积分活动 1592946
关于科研通互助平台的介绍 1547300