Graph Attention Network–Based Deep Reinforcement Learning Scheduling Framework for in-Vehicle Time-Sensitive Networking

强化学习 计算机科学 调度(生产过程) 图形 分布式计算 人工智能 计算机网络 理论计算机科学 工程类 运营管理
作者
Wenjing Sun,Yuan Zou,Nan Guan,Xudong Zhang,Guodong Du,Ya Wen
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (7): 9825-9836
标识
DOI:10.1109/tii.2024.3388669
摘要

Time-sensitive networking (TSN) can offer deterministic low-latency communication, making it a critical solution for high-level autonomous vehicle's in-vehicle network. The deterministic transmission of TSN relies on TSN traffic scheduling. To ensure real-time transmission performance and vehicle functional safety, in-vehicle TSN scheduling aims to reduce end-to-end delay. Despite the promising potential of graph neural networks and deep reinforcement learning (DRL) in navigating complex TSN scheduling environments, its application has predominantly been limited to enhancing schedulability without a targeted focus on minimizing delays. This article introduces a DRL in-vehicle TSN scheduling framework based on the graph attention network (GAT). The scheduling problem is abstracted as a delay optimization problem and mapped to a Markov decision process (MDP), which is solved using the proximal policy optimization (PPO) algorithm. The GAT with attention mechanism is incorporated to extract critical information to enhance feature extraction and improve scheduling accuracy. This GAT-based PPO method can achieve high-precision offline scheduling through training, producing low-delay scheduling results. Simulation results demonstrate that the proposed method improves offline scheduling performance compared to other DRL-based scheduling methods. Leveraging the trained neural network, the proposed method can also deliver high robustness in online scheduling under link failure scenarios. It can produce a scheduling solution in just 3.8 s, and the scheduling results for all failure scenarios surpass those of rule-based benchmarking methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Thien应助桃子采纳,获得10
刚刚
Cindy发布了新的文献求助10
刚刚
出门见喜发布了新的文献求助10
1秒前
1秒前
fangjie完成签到,获得积分10
1秒前
轻松乾完成签到,获得积分20
2秒前
深情海秋完成签到,获得积分10
2秒前
2秒前
wdw2501发布了新的文献求助10
2秒前
yun云完成签到,获得积分10
2秒前
2秒前
洁净奄发布了新的文献求助10
3秒前
噢嚯霍霍应助chen采纳,获得10
3秒前
ding应助儒雅烤鸡采纳,获得10
4秒前
美丽的问安完成签到 ,获得积分10
4秒前
子车碧琴发布了新的文献求助20
4秒前
pcr163应助wy666666采纳,获得100
4秒前
鼻揩了转去应助阿巴阿巴采纳,获得10
4秒前
GXY完成签到,获得积分10
5秒前
朴实的猎豹完成签到,获得积分10
5秒前
xiaoming发布了新的文献求助10
6秒前
明天就毕业完成签到,获得积分10
6秒前
7秒前
wwss发布了新的文献求助10
7秒前
子车茗应助persist采纳,获得30
7秒前
ljb完成签到,获得积分10
7秒前
8秒前
zzx发布了新的文献求助10
8秒前
VISIN完成签到,获得积分10
9秒前
9秒前
chen完成签到,获得积分10
9秒前
SYLH应助出门见喜采纳,获得10
9秒前
10秒前
令狐姝完成签到,获得积分10
11秒前
坚定背包发布了新的文献求助10
11秒前
11秒前
12秒前
XY发布了新的文献求助20
12秒前
智呀笙笙嘻完成签到,获得积分10
13秒前
情怀应助Leelelele采纳,获得10
13秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734857
求助须知:如何正确求助?哪些是违规求助? 3278790
关于积分的说明 10011741
捐赠科研通 2995468
什么是DOI,文献DOI怎么找? 1643460
邀请新用户注册赠送积分活动 781216
科研通“疑难数据库(出版商)”最低求助积分说明 749300