Predictive modeling for early detection of biliary atresia in infants with cholestasis: Insights from a machine learning study

胆道闭锁 支持向量机 胆汁淤积 新生儿胆汁淤积症 水准点(测量) 计算机科学 人工智能 机器学习 可解释性 特征(语言学) 儿科 算法 医学 内科学 移植 肝移植 语言学 哲学 大地测量学 地理
作者
Xuting Chen,Dongying Zhao,Haochen Ji,Yihuan Chen,Yahui Li,Zongyu Zuo
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108439-108439 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108439
摘要

Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特跳跳糖完成签到 ,获得积分10
刚刚
思源应助海岸采纳,获得10
3秒前
星辰大海应助牛牛眉目采纳,获得10
3秒前
4秒前
KM完成签到,获得积分10
5秒前
5秒前
6秒前
JamesPei应助Xin采纳,获得10
6秒前
Lucas应助TiO太阳采纳,获得10
8秒前
充电宝应助000采纳,获得10
8秒前
研友_EZ1GJL发布了新的文献求助20
9秒前
特独斩完成签到,获得积分10
11秒前
单纯天晴发布了新的文献求助10
11秒前
小王发布了新的文献求助10
12秒前
12秒前
13秒前
缓慢的翅膀完成签到,获得积分10
13秒前
14秒前
ding应助XLL小绿绿采纳,获得10
15秒前
16秒前
及禾应助此间少年郎采纳,获得10
16秒前
共享精神应助seedcode采纳,获得10
17秒前
18秒前
18秒前
含蓄元冬发布了新的文献求助10
19秒前
Hello应助linmo采纳,获得10
20秒前
充电宝应助牛牛眉目采纳,获得10
22秒前
22秒前
念姬发布了新的文献求助10
22秒前
000发布了新的文献求助10
24秒前
思源应助积极的尔岚采纳,获得10
24秒前
25秒前
oiiomin发布了新的文献求助10
25秒前
TiO太阳发布了新的文献求助10
26秒前
139完成签到 ,获得积分0
27秒前
28秒前
哈哈哈发布了新的文献求助10
28秒前
含蓄元冬完成签到,获得积分10
28秒前
丘比特应助J33采纳,获得10
29秒前
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388