Predictive modeling for early detection of biliary atresia in infants with cholestasis: Insights from a machine learning study

胆道闭锁 支持向量机 胆汁淤积 新生儿胆汁淤积症 水准点(测量) 计算机科学 人工智能 机器学习 可解释性 特征(语言学) 儿科 算法 医学 内科学 哲学 地理 语言学 肝移植 大地测量学 移植
作者
Xuting Chen,Dongying Zhao,Haochen Ji,Yihuan Chen,Yahui Li,Zongyu Zuo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108439-108439 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108439
摘要

Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好元槐完成签到,获得积分10
2秒前
2秒前
3秒前
汉堡包应助达不溜qp采纳,获得10
3秒前
醉眠完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
justsoso完成签到,获得积分0
8秒前
zengyangyu发布了新的文献求助50
8秒前
9秒前
JamesPei应助Hathaway采纳,获得30
10秒前
lulu发布了新的文献求助10
10秒前
13秒前
瞿霞发布了新的文献求助10
14秒前
16秒前
传奇3应助Zhoujie采纳,获得10
17秒前
kellogg发布了新的文献求助10
17秒前
Keira_Chang发布了新的文献求助20
18秒前
Lucas应助嘿嘿嘿采纳,获得10
18秒前
情怀应助瞿霞采纳,获得10
19秒前
feljqlik完成签到,获得积分10
23秒前
英俊的铭应助wyt1239012采纳,获得10
24秒前
欣喜的薯片完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
QiLe发布了新的文献求助20
27秒前
28秒前
蛋蛋完成签到 ,获得积分10
29秒前
111关注了科研通微信公众号
29秒前
三一完成签到,获得积分10
29秒前
30秒前
每㐬山风发布了新的文献求助10
30秒前
4114完成签到,获得积分10
31秒前
31秒前
嘿嘿嘿发布了新的文献求助10
35秒前
自觉雁玉发布了新的文献求助10
35秒前
35秒前
37秒前
37秒前
innocent完成签到 ,获得积分10
38秒前
小白鞋完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425164
求助须知:如何正确求助?哪些是违规求助? 4539269
关于积分的说明 14166518
捐赠科研通 4456411
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435224
关于科研通互助平台的介绍 1412564