Predictive modeling for early detection of biliary atresia in infants with cholestasis: Insights from a machine learning study

胆道闭锁 支持向量机 胆汁淤积 新生儿胆汁淤积症 水准点(测量) 计算机科学 人工智能 机器学习 可解释性 特征(语言学) 儿科 算法 医学 内科学 哲学 地理 语言学 肝移植 大地测量学 移植
作者
Xuting Chen,Dongying Zhao,Haochen Ji,Yihuan Chen,Yahui Li,Zongyu Zuo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108439-108439 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108439
摘要

Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHEE完成签到 ,获得积分10
刚刚
FashionBoy应助风华笔墨采纳,获得10
1秒前
ZZ发布了新的文献求助10
1秒前
1秒前
xiaoxiao发布了新的文献求助10
2秒前
潮哈哈耶完成签到,获得积分10
2秒前
3秒前
GEeZiii发布了新的文献求助10
3秒前
3秒前
可耐的冰萍完成签到,获得积分10
3秒前
哈哈哈哈哈哈完成签到,获得积分10
4秒前
求知的土拨鼠完成签到,获得积分10
4秒前
北风发布了新的文献求助10
4秒前
研团子发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
6秒前
6秒前
希望天下0贩的0应助华琪采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
十七完成签到 ,获得积分10
8秒前
大方岩发布了新的文献求助10
9秒前
9秒前
情怀应助柠檬采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
曼荷菠萝发布了新的文献求助10
11秒前
李健应助ZZ采纳,获得10
11秒前
yang发布了新的文献求助10
11秒前
白白白发布了新的文献求助10
11秒前
小李同学发布了新的文献求助30
12秒前
蓝蓝蓝发布了新的文献求助10
12秒前
12秒前
阿巴阿巴发布了新的文献求助10
12秒前
初空月儿发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462397
求助须知:如何正确求助?哪些是违规求助? 4567107
关于积分的说明 14308810
捐赠科研通 4492907
什么是DOI,文献DOI怎么找? 2461315
邀请新用户注册赠送积分活动 1450358
关于科研通互助平台的介绍 1425794