Predictive modeling for early detection of biliary atresia in infants with cholestasis: Insights from a machine learning study

胆道闭锁 支持向量机 胆汁淤积 新生儿胆汁淤积症 水准点(测量) 计算机科学 人工智能 机器学习 可解释性 特征(语言学) 儿科 算法 医学 内科学 移植 肝移植 语言学 哲学 大地测量学 地理
作者
Xuting Chen,Dongying Zhao,Haochen Ji,Yihuan Chen,Yahui Li,Zongyu Zuo
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108439-108439 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108439
摘要

Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
大贺呀发布了新的文献求助30
3秒前
小鱼关注了科研通微信公众号
4秒前
cjlinhunu完成签到,获得积分10
5秒前
林夕完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
思源应助可爱的曼文采纳,获得10
8秒前
不住完成签到,获得积分10
8秒前
wsd关闭了wsd文献求助
9秒前
不住发布了新的文献求助10
11秒前
脑洞疼应助过时的热狗采纳,获得10
11秒前
11秒前
12秒前
还好发布了新的文献求助10
12秒前
12秒前
14秒前
15秒前
Liaost发布了新的文献求助10
17秒前
Ava应助yyyyy采纳,获得10
18秒前
18秒前
喝杯水再走完成签到,获得积分10
20秒前
20秒前
Akim应助乐天儿采纳,获得30
21秒前
22秒前
孤岛飞鹰完成签到,获得积分10
23秒前
23秒前
李健应助xiao123789采纳,获得10
23秒前
24秒前
旋转鸡爪子完成签到,获得积分10
25秒前
suyu发布了新的文献求助10
25秒前
27秒前
尼龙niuniu完成签到,获得积分10
27秒前
wx发布了新的文献求助10
27秒前
28秒前
lascy完成签到,获得积分10
29秒前
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313983
求助须知:如何正确求助?哪些是违规求助? 2946364
关于积分的说明 8529773
捐赠科研通 2622015
什么是DOI,文献DOI怎么找? 1434286
科研通“疑难数据库(出版商)”最低求助积分说明 665190
邀请新用户注册赠送积分活动 650774