Influence of workpiece geometry and natural frequencies on ultrasonic metal welding

焊接 夹紧 机械工程 超声波焊接 振荡(细胞信号) 固有频率 摩擦焊接 超声波传感器 材料科学 声学 振动 工程类 物理 遗传学 生物
作者
Florian W. Müller,J Liu,Alexander Schiebahn,Uwe Reisgen
标识
DOI:10.1177/14644207241245431
摘要

Ultrasonic metal welding is a well-established solid state joining process for electrical applications. The process relies on the friction between workpieces and welding tools for joint formation. This friction is generated by the process force and the ultrasonic oscillation of the welding tools imposed on the workpieces. At such high frequencies, the occurrence of resonances in actual workpiece geometries is not surprising. It is known that critical dimensions in length and width lead to nearly no bond, depending on the welding frequency and the mechanical properties of the material. In real applications, this limits the possible designs of terminals and leads to extensive testing of clamping devices. It is also known that machine learning (ML) models for quality prediction based on power signals or tool oscillation can account for changes in welding position. In this study, we investigated the impact of part resonance and antiresonance on horn and anvil oscillation, power consumption and bond strength to identify typical behaviors induced by the workpieces. The influence of material thickness and roughness was considered, and numerical analysis of the natural frequencies of the workpieces was conducted. It can be shown that the results allow a distinction between the welding positions and workpiece geometries without directly measuring the oscillation patterns of the workpieces, allowing a simple validation of geometry weldability and clamping device in applications. Furthermore, the investigation allows the knowledge based specific deduction of signal parameters for future ML models, allowing a consideration of welding position and workpieces geometry with reduced test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周大仙发布了新的文献求助10
刚刚
完美世界应助水三寿采纳,获得10
1秒前
4秒前
jl发布了新的文献求助10
4秒前
cOol完成签到,获得积分10
4秒前
5秒前
DrKe完成签到,获得积分10
5秒前
ABC关闭了ABC文献求助
6秒前
隐形曼青应助木子青山采纳,获得10
6秒前
6秒前
坚强亦丝应助lighting采纳,获得10
7秒前
iuv完成签到,获得积分20
7秒前
善学以致用应助会飞的猪采纳,获得10
7秒前
8秒前
lili发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
轻松冰旋应助黄雪峰采纳,获得50
12秒前
12秒前
raolixiang发布了新的文献求助10
15秒前
JamesPei应助千冬采纳,获得10
15秒前
水三寿发布了新的文献求助10
16秒前
wanci应助繁荣的又夏采纳,获得10
16秒前
太阳完成签到,获得积分10
17秒前
莉莉发布了新的文献求助10
17秒前
18秒前
Cukaka完成签到,获得积分10
19秒前
raolixiang完成签到,获得积分10
21秒前
21秒前
与落发布了新的文献求助10
21秒前
22秒前
Cukaka发布了新的文献求助10
23秒前
23秒前
DQ1175完成签到 ,获得积分10
23秒前
英俊的铭应助hyx-dentist采纳,获得10
23秒前
23秒前
从容芮应助莉莉采纳,获得10
24秒前
天真的红酒完成签到,获得积分10
24秒前
小殷发布了新的文献求助10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136607
求助须知:如何正确求助?哪些是违规求助? 2787645
关于积分的说明 7782462
捐赠科研通 2443707
什么是DOI,文献DOI怎么找? 1299370
科研通“疑难数据库(出版商)”最低求助积分说明 625429
版权声明 600954