已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influence of workpiece geometry and natural frequencies on ultrasonic metal welding

焊接 夹紧 机械工程 超声波焊接 振荡(细胞信号) 固有频率 摩擦焊接 超声波传感器 材料科学 声学 振动 工程类 物理 遗传学 生物
作者
Florian W. Müller,J Liu,Alexander Schiebahn,Uwe Reisgen
标识
DOI:10.1177/14644207241245431
摘要

Ultrasonic metal welding is a well-established solid state joining process for electrical applications. The process relies on the friction between workpieces and welding tools for joint formation. This friction is generated by the process force and the ultrasonic oscillation of the welding tools imposed on the workpieces. At such high frequencies, the occurrence of resonances in actual workpiece geometries is not surprising. It is known that critical dimensions in length and width lead to nearly no bond, depending on the welding frequency and the mechanical properties of the material. In real applications, this limits the possible designs of terminals and leads to extensive testing of clamping devices. It is also known that machine learning (ML) models for quality prediction based on power signals or tool oscillation can account for changes in welding position. In this study, we investigated the impact of part resonance and antiresonance on horn and anvil oscillation, power consumption and bond strength to identify typical behaviors induced by the workpieces. The influence of material thickness and roughness was considered, and numerical analysis of the natural frequencies of the workpieces was conducted. It can be shown that the results allow a distinction between the welding positions and workpiece geometries without directly measuring the oscillation patterns of the workpieces, allowing a simple validation of geometry weldability and clamping device in applications. Furthermore, the investigation allows the knowledge based specific deduction of signal parameters for future ML models, allowing a consideration of welding position and workpieces geometry with reduced test data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独立网卡1完成签到,获得积分20
刚刚
情怀应助caicai采纳,获得10
2秒前
blingbling发布了新的文献求助10
3秒前
KANE完成签到,获得积分10
4秒前
独立网卡1发布了新的文献求助10
5秒前
司忆完成签到 ,获得积分10
5秒前
7秒前
8秒前
乐乐应助coke采纳,获得10
8秒前
任性大米完成签到 ,获得积分10
11秒前
我又可以了完成签到,获得积分10
12秒前
3262发布了新的文献求助10
13秒前
15秒前
17秒前
adljian完成签到,获得积分10
17秒前
18秒前
英俊的铭应助chana采纳,获得10
18秒前
香蕉觅云应助shinn采纳,获得30
19秒前
19秒前
caicai发布了新的文献求助10
20秒前
猜不猜不完成签到 ,获得积分10
20秒前
酷酷的冰真应助柏林寒冬采纳,获得30
22秒前
小野菌发布了新的文献求助30
23秒前
shinn完成签到,获得积分10
23秒前
SCIfafafafa发布了新的文献求助10
23秒前
Gaga发布了新的文献求助10
24秒前
Strive完成签到,获得积分10
25秒前
caicai完成签到,获得积分10
26秒前
27秒前
会撒娇的含巧完成签到,获得积分10
28秒前
29秒前
柏林寒冬给柏林寒冬的求助进行了留言
30秒前
小巧念露发布了新的文献求助10
32秒前
33秒前
Ivy完成签到,获得积分10
33秒前
coke发布了新的文献求助10
35秒前
当地人完成签到,获得积分10
36秒前
36秒前
xhlxhl完成签到,获得积分10
38秒前
NexusExplorer应助SCIfafafafa采纳,获得10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968154
求助须知:如何正确求助?哪些是违规求助? 3513149
关于积分的说明 11166686
捐赠科研通 3248410
什么是DOI,文献DOI怎么找? 1794206
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629