清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting Safety Accident Costs in Construction Projects Using Ensemble Data-Driven Models

事故(哲学) 计算机科学 运输工程 风险分析(工程) 工程类 业务 认识论 哲学
作者
Xin Xia,Pengcheng Xiang,Sadegh Khanmohammadi,Tian Gao,Mehrdad Arashpour
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (7) 被引量:3
标识
DOI:10.1061/jcemd4.coeng-14397
摘要

The construction industry suffers from frequent and expensive safety accidents, significantly affecting construction project performance. Numerous data-driven classification models have been developed to categorize construction accident outcomes. While critical influencing factors provide insights for safety prevention, existing models have given less attention to the cost of accidents—an important indicator influencing management decisions. This study aims to develop accident cost prediction models that examine crucial precursors of safety accidents, offering guidance for construction safety prevention from a financial perspective. This study collected 1,606 accident reports from the Chinese construction industry between 2005 and 2022 to address this gap. Three ensemble data-driven methods, namely random forest, extreme gradient boosting regressor (XGBoost), and natural gradient boosting regressor (NGBoost) were employed to develop accident cost prediction models. Based on the performance comparison, the random forest regression model for accident cost was determined to be the best prediction model. To extract the critical attributes affecting safety accident costs, this study utilized shapely additive explanations (SHAP) value to analyze the sensitivity and influence of input variables of data-driven models. The findings showed that collapse has the greatest impact on accident costs, as indicated by the highest mean SHAP value, followed by falling from height. Furthermore, factors such as year, safety supervision, drawing, and construction plan are noteworthy in affecting accident cost prediction. Safety department, protection, and work conditions hold a slightly higher degree of influence compared to contracting arrangement, safety culture, safety supervision, training and examination, and mechanical equipment on the model output. This study provides a dimension that might be overlooked in the investigation of safety accidents in the construction industry and the insights provided by findings will contribute to the development of targeted safety accident prevention strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
忆墨浅琳发布了新的文献求助10
19秒前
蓝意完成签到,获得积分0
27秒前
53秒前
阿巴发布了新的文献求助10
57秒前
刘小源完成签到 ,获得积分10
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
2分钟前
LSS发布了新的文献求助10
2分钟前
qq完成签到 ,获得积分10
2分钟前
科研通AI2S应助elvis850910采纳,获得10
2分钟前
迷茫的一代完成签到,获得积分10
3分钟前
lilylwy完成签到 ,获得积分0
3分钟前
3分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
4分钟前
缺粥完成签到 ,获得积分10
4分钟前
4分钟前
blueskyzhi完成签到,获得积分10
4分钟前
elvis850910发布了新的文献求助10
4分钟前
科目三应助lulu采纳,获得10
4分钟前
elvis850910完成签到,获得积分10
4分钟前
aero完成签到 ,获得积分10
4分钟前
mojito完成签到 ,获得积分10
5分钟前
熄熄完成签到 ,获得积分10
5分钟前
5分钟前
drsherlock发布了新的文献求助10
5分钟前
轻松的冰巧完成签到 ,获得积分10
5分钟前
一个小短发完成签到 ,获得积分10
5分钟前
5分钟前
lulu完成签到,获得积分10
5分钟前
lulu发布了新的文献求助10
6分钟前
完美世界应助平常安采纳,获得10
6分钟前
墨辰完成签到 ,获得积分10
6分钟前
6分钟前
健壮丝袜发布了新的文献求助20
6分钟前
abcdefg完成签到,获得积分10
6分钟前
传奇完成签到 ,获得积分10
6分钟前
6分钟前
李爱国应助dahai采纳,获得10
6分钟前
平常安完成签到,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3677751
求助须知:如何正确求助?哪些是违规求助? 3231568
关于积分的说明 9798063
捐赠科研通 2942689
什么是DOI,文献DOI怎么找? 1613452
邀请新用户注册赠送积分活动 761610
科研通“疑难数据库(出版商)”最低求助积分说明 736995