Accuracy of Artificial Intelligence Models in the Prediction of Periodontitis: A Systematic Review

牙周炎 牙周病学 随机森林 人工智能 斯科普斯 逻辑回归 计算机科学 系统回顾 人工神经网络 机器学习 风险评估 决策树 数据挖掘 梅德林 医学 牙科 计算机安全 法学 政治学
作者
Alessandro Polizzi,Vincenzo Quinzi,Antonino Lo Giudice,Giuseppe Marzo,Rosalia Leonardi,Gaetano Isola
出处
期刊:JDR clinical and translational research [SAGE Publishing]
卷期号:9 (4): 312-324 被引量:5
标识
DOI:10.1177/23800844241232318
摘要

Introduction: Periodontitis is the main cause of tooth loss and is related to many systemic diseases. Artificial intelligence (AI) in periodontics has the potential to improve the accuracy of risk assessment and provide personalized treatment planning for patients with periodontitis. This systematic review aims to examine the actual evidence on the accuracy of various AI models in predicting periodontitis. Methods: Using a mix of MeSH keywords and free text words pooled by Boolean operators (‘AND’, ‘OR’), a search strategy without a time frame setting was conducted on the following databases: Web of Science, ProQuest, PubMed, Scopus, and IEEE Explore. The QUADAS-2 risk of bias assessment was then performed. Results: From a total of 961 identified records screened, 8 articles were included for qualitative analysis: 4 studies showed an overall low risk of bias, 2 studies an unclear risk, and the remaining 2 studies a high risk. The most employed algorithms for periodontitis prediction were artificial neural networks, followed by support vector machines, decision trees, logistic regression, and random forest. The models showed good predictive performance for periodontitis according to different evaluation metrics, but the presented methods were heterogeneous. Conclusions: AI algorithms may improve in the future the accuracy and reliability of periodontitis prediction. However, to date, most of the studies had a retrospective design and did not consider the most modern deep learning networks. Although the available evidence is limited by a lack of standardized data collection and protocols, the potential benefits of using AI in periodontics are significant and warrant further research and development in this area. Knowledge Transfer Statement: The use of AI in periodontics can lead to more accurate diagnosis and treatment planning, as well as improved patient education and engagement. Despite the current challenges and limitations of the available evidence, particularly the lack of standardized data collection and analysis protocols, the potential benefits of using AI in periodontics are significant and warrant further research and development in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陶渊明发布了新的文献求助10
1秒前
科研通AI5应助马倩茹采纳,获得10
2秒前
古月完成签到,获得积分10
4秒前
很多熏熏发布了新的文献求助10
6秒前
keroro发布了新的文献求助10
6秒前
小熵发布了新的文献求助10
6秒前
YilinHou完成签到,获得积分10
6秒前
科研通AI2S应助小雨采纳,获得10
7秒前
8秒前
xiajj发布了新的文献求助10
12秒前
CodeCraft应助廾匸采纳,获得10
13秒前
科研通AI5应助称心寒松采纳,获得10
13秒前
13秒前
keroro完成签到,获得积分10
13秒前
马倩茹发布了新的文献求助10
14秒前
14秒前
17秒前
WYF完成签到,获得积分20
18秒前
joruruo发布了新的文献求助30
18秒前
很多熏熏完成签到,获得积分10
19秒前
19秒前
李健应助难过以晴采纳,获得30
20秒前
加百莉发布了新的文献求助10
21秒前
WFLLL发布了新的文献求助10
21秒前
雪流星发布了新的文献求助10
22秒前
23秒前
无花果应助落寞电灯胆采纳,获得10
23秒前
Akim应助勤奋千风采纳,获得10
24秒前
25秒前
谜记完成签到,获得积分10
25秒前
25秒前
彼岸完成签到,获得积分10
26秒前
26秒前
seven完成签到,获得积分10
27秒前
CR发布了新的文献求助10
27秒前
shangyu66发布了新的文献求助10
28秒前
墨辰发布了新的文献求助10
28秒前
科研通AI5应助王sir采纳,获得10
28秒前
一路美好完成签到,获得积分10
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427