Parallel framework of a multi-graph convolutional network and gated recurrent unit for spatial–temporal metro passenger flow prediction

计算机科学 邻接表 数据挖掘 图形 公制(单位) 空间相关性 算法 理论计算机科学 工程类 电信 运营管理
作者
Zhan Shou-yi,Cai Yi,Cong Xiu,Dajie Zuo,Dian Wang,S.C. Wong
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 123982-123982
标识
DOI:10.1016/j.eswa.2024.123982
摘要

Metro passenger flow prediction is a critical problem in metro transport systems. However, recent studies have either overlooked spatial information on the metro network or primarily focused on modeling spatial dependencies using only the physical topology. To achieve accurate metro passenger flow (inflow and outflow at each station of a network) prediction, this study proposes a joint prediction model that combines the multi-graph convolution network and the gated recurrent unit (GRU). In addition to exploring location topology relationships, the proposed model selects two non-Euclidean spatial dependencies in metro passenger flow prediction to design essential graph elements as part of the stacked spatial block. Three spatial relationships (adjacency, similarity, and correlation) are integrated in parallel with the GRU network. The metro passenger flow prediction framework ASC-GRU (adjacency, similarity, correlation, and gated recurrent unit) is designed to mitigate the distortion of results during the capturing of passenger flow spatial–temporal features. Finally, ASC-GRU is tested using two datasets from the Hangzhou and Shanghai metro networks in China, and the error metrics of different models are compared and analyzed to verify the effectiveness and feasibility of ASC-GRU. The test results demonstrate that the proposed model outperforms other baseline models in passenger flow prediction over long time intervals and large networks. In particular, compared with the best performance of the baselines, the average reduction is around 3%, 12% and 13% in metrics of MAPE, MAE and RMSE, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao金发布了新的文献求助10
2秒前
夏鸥发布了新的文献求助20
2秒前
玄月发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
kk完成签到,获得积分10
8秒前
8秒前
HUMBLE完成签到 ,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
12秒前
飘零枫叶发布了新的文献求助10
13秒前
wyqking发布了新的文献求助10
14秒前
14秒前
15秒前
横扫完成签到 ,获得积分10
16秒前
共享精神应助liu采纳,获得50
16秒前
爱吃烤苕皮完成签到,获得积分10
17秒前
紧张的十三完成签到,获得积分10
17秒前
17秒前
Ciii发布了新的文献求助10
17秒前
洋洋完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
Tu完成签到 ,获得积分10
20秒前
wyqking完成签到,获得积分10
21秒前
快乐的鱼完成签到,获得积分10
21秒前
ZQ完成签到,获得积分10
21秒前
乔呆驼完成签到,获得积分10
22秒前
喵喵7完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
Crescent完成签到 ,获得积分10
24秒前
24秒前
wanci应助yzy采纳,获得10
24秒前
飘零枫叶完成签到,获得积分0
24秒前
华仔应助夏鸥采纳,获得10
24秒前
独特的咩咩完成签到 ,获得积分10
25秒前
英姑应助玄月采纳,获得10
26秒前
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662487
求助须知:如何正确求助?哪些是违规求助? 3223261
关于积分的说明 9750825
捐赠科研通 2933130
什么是DOI,文献DOI怎么找? 1605938
邀请新用户注册赠送积分活动 758208
科研通“疑难数据库(出版商)”最低求助积分说明 734743