Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 癌症 肿瘤科 磁共振成像 内科学 阶段(地层学) 队列 接收机工作特性 放射科 古生物学 生物
作者
Wei Li,Yühong Huang,Teng Zhu,Yimin Zhang,Xingxing Zheng,Tingfeng Zhang,Ying-Yi Lin,Zhi‐Yong Wu,Zaiyi Liu,Ying Lin,Guolin Ye,Kun Wang
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:6
标识
DOI:10.1097/sla.0000000000006279
摘要

Objective: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. Summary Background Data: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. Methods: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). Results: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. Conclusions: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
七寻发布了新的文献求助10
1秒前
shining发布了新的文献求助10
2秒前
冲冲冲!发布了新的文献求助10
2秒前
兔BF发布了新的文献求助10
3秒前
妞妞妈完成签到,获得积分10
3秒前
wrimer发布了新的文献求助10
3秒前
寻悦完成签到,获得积分10
3秒前
无花果应助charih采纳,获得10
4秒前
yls123发布了新的文献求助10
4秒前
科研01完成签到,获得积分10
4秒前
wbr完成签到,获得积分10
4秒前
5秒前
5秒前
打打应助Aurora采纳,获得10
5秒前
5秒前
5秒前
小二郎应助黑沧浪亭采纳,获得10
5秒前
瓜瓜完成签到,获得积分20
5秒前
6秒前
点点完成签到 ,获得积分10
6秒前
6秒前
anya完成签到,获得积分10
6秒前
6秒前
vivre223发布了新的文献求助10
6秒前
kk君发布了新的文献求助10
6秒前
妞妞妈发布了新的文献求助10
6秒前
7秒前
7秒前
可以2发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
8秒前
mashirodesuki发布了新的文献求助10
8秒前
寻悦发布了新的文献求助10
8秒前
FL完成签到 ,获得积分0
8秒前
9秒前
我是犇犇发布了新的文献求助10
9秒前
bkagyin应助熊有鹏采纳,获得10
9秒前
北天极完成签到 ,获得积分10
10秒前
dbq发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003