Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 癌症 肿瘤科 磁共振成像 内科学 阶段(地层学) 队列 接收机工作特性 放射科 古生物学 生物
作者
Wei Li,Yühong Huang,Teng Zhu,Yimin Zhang,Xingxing Zheng,Tingfeng Zhang,Ying-Yi Lin,Zhi‐Yong Wu,Zaiyi Liu,Ying Lin,Guolin Ye,Kun Wang
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/sla.0000000000006279
摘要

Objective: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. Summary Background Data: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. Methods: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). Results: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. Conclusions: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助jane采纳,获得10
2秒前
2秒前
Hello应助行者采纳,获得10
3秒前
yixia222发布了新的文献求助10
3秒前
4秒前
Ava应助Maestro_S采纳,获得30
5秒前
结实的蘑菇完成签到 ,获得积分10
6秒前
青山老岸完成签到,获得积分10
7秒前
丘比特应助mslln采纳,获得10
9秒前
香蕉觅云应助跳跃的代芙采纳,获得10
9秒前
Jiang-Yujia发布了新的文献求助10
9秒前
9秒前
褶皱发布了新的文献求助10
9秒前
10秒前
Della完成签到,获得积分10
11秒前
11秒前
半透明完成签到,获得积分20
12秒前
往返完成签到,获得积分10
12秒前
啦啦啦发布了新的文献求助10
15秒前
褶皱完成签到,获得积分10
17秒前
17秒前
mslln发布了新的文献求助10
22秒前
神经娃完成签到,获得积分10
23秒前
23秒前
布曲完成签到 ,获得积分10
28秒前
28秒前
28秒前
迅速泽洋发布了新的文献求助10
29秒前
30秒前
李爱国应助Amanda采纳,获得10
31秒前
33秒前
34秒前
文静醉易完成签到,获得积分10
34秒前
35秒前
35秒前
调研昵称发布了新的文献求助10
36秒前
听闻墨笙完成签到 ,获得积分10
36秒前
我是老大应助晚风中追风采纳,获得10
37秒前
zhtty完成签到,获得积分20
37秒前
香蕉觅云应助科研通管家采纳,获得10
38秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760