Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 癌症 肿瘤科 磁共振成像 内科学 阶段(地层学) 队列 接收机工作特性 放射科 古生物学 生物
作者
Wei Li,Yühong Huang,Teng Zhu,Yimin Zhang,Xingxing Zheng,Tingfeng Zhang,Ying-Yi Lin,Zhi‐Yong Wu,Zaiyi Liu,Ying Lin,Guolin Ye,Kun Wang
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:4
标识
DOI:10.1097/sla.0000000000006279
摘要

Objective: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. Summary Background Data: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. Methods: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). Results: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. Conclusions: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Camellia完成签到 ,获得积分10
1秒前
1秒前
搜集达人应助佰斯特威采纳,获得30
1秒前
QXS完成签到 ,获得积分10
1秒前
Jasper应助Ll采纳,获得10
1秒前
zengli完成签到 ,获得积分10
2秒前
2go完成签到,获得积分10
2秒前
派大星完成签到,获得积分10
2秒前
娜行发布了新的文献求助10
2秒前
3秒前
小巧的如冬完成签到,获得积分10
3秒前
lxh完成签到,获得积分10
3秒前
3秒前
HEIKU应助谦让傲菡采纳,获得10
3秒前
舒涵关注了科研通微信公众号
3秒前
灰鹅发布了新的文献求助10
4秒前
可颂完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
国服懒羊羊完成签到,获得积分10
6秒前
领导范儿应助ZTT采纳,获得10
6秒前
moon发布了新的文献求助10
7秒前
小宇发布了新的文献求助10
7秒前
7秒前
Neon0524完成签到 ,获得积分10
7秒前
HEIKU应助颜绫采纳,获得50
8秒前
8秒前
Jiayou Zhang完成签到,获得积分10
8秒前
高高迎蓉发布了新的文献求助10
8秒前
徐霜完成签到 ,获得积分10
9秒前
DDXXC完成签到,获得积分10
9秒前
忧郁的续完成签到,获得积分20
9秒前
陈强发布了新的文献求助30
9秒前
wzg666完成签到,获得积分10
10秒前
10秒前
爆米花应助找不到采纳,获得10
10秒前
任性的梦菲应助圈圈采纳,获得30
10秒前
11秒前
Ava应助踏实的烙采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672