Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 癌症 肿瘤科 磁共振成像 内科学 阶段(地层学) 队列 接收机工作特性 放射科 古生物学 生物
作者
Wei Li,Yühong Huang,Teng Zhu,Yimin Zhang,Xingxing Zheng,Tingfeng Zhang,Ying-Yi Lin,Zhi‐Yong Wu,Zaiyi Liu,Ying Lin,Guolin Ye,Kun Wang
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:6
标识
DOI:10.1097/sla.0000000000006279
摘要

Objective: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. Summary Background Data: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. Methods: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). Results: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. Conclusions: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
meinv发布了新的文献求助20
刚刚
乐乐应助小手拉大手采纳,获得10
刚刚
1秒前
LZL完成签到,获得积分10
1秒前
斯文败类应助花花采纳,获得10
1秒前
科研通AI2S应助Everleaf采纳,获得10
1秒前
CC发布了新的文献求助10
1秒前
2秒前
2秒前
拓跋涵易发布了新的文献求助10
2秒前
rabbitsang发布了新的文献求助10
3秒前
24发布了新的文献求助10
4秒前
终究发布了新的文献求助10
4秒前
Isaiah发布了新的文献求助10
4秒前
4秒前
Gaojin锦完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
笑点低梦安完成签到,获得积分10
5秒前
5秒前
阿琪发布了新的文献求助10
5秒前
FashionBoy应助CC采纳,获得10
6秒前
抽不动的CRYBABY完成签到,获得积分20
6秒前
11发布了新的文献求助10
6秒前
ding应助竹笋爱炒肉采纳,获得20
6秒前
LZL发布了新的文献求助10
6秒前
6秒前
8秒前
维生素发布了新的文献求助10
8秒前
hyxu678发布了新的文献求助30
8秒前
李健应助Yanxb采纳,获得10
8秒前
共享精神应助Annlucy采纳,获得30
9秒前
10秒前
10秒前
22222发布了新的文献求助10
10秒前
爆米花应助NBS采纳,获得10
10秒前
scl发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479588
求助须知:如何正确求助?哪些是违规求助? 4581062
关于积分的说明 14378191
捐赠科研通 4509541
什么是DOI,文献DOI怎么找? 2471454
邀请新用户注册赠送积分活动 1457924
关于科研通互助平台的介绍 1431669