Noninvasive Artificial Intelligence System for Early Predicting Residual Cancer Burden during Neoadjuvant Chemotherapy in Breast Cancer

医学 乳腺癌 癌症 肿瘤科 磁共振成像 内科学 阶段(地层学) 队列 接收机工作特性 放射科 古生物学 生物
作者
Wei Li,Yühong Huang,Teng Zhu,Yimin Zhang,Xingxing Zheng,Tingfeng Zhang,Ying-Yi Lin,Zhi‐Yong Wu,Zaiyi Liu,Ying Lin,Guolin Ye,Kun Wang
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
被引量:6
标识
DOI:10.1097/sla.0000000000006279
摘要

Objective: To develop an artificial intelligence (AI) system for the early prediction of residual cancer burden (RCB) scores during neoadjuvant chemotherapy (NAC) in breast cancer. Summary Background Data: RCB III indicates drug resistance in breast cancer, and early detection methods are lacking. Methods: This study enrolled 1048 patients with breast cancer from four institutions, who were all receiving NAC. Magnetic resonance images were collected at the pre- and mid-NAC stages, and radiomics and deep learning features were extracted. A multitask AI system was developed to classify patients into three groups (RCB 0-I, II, and III ) in the primary cohort (PC, n=335). Feature selection was conducted using the Mann-Whitney U- test, Spearman analysis, least absolute shrinkage and selection operator regression, and the Boruta algorithm. Single-modality models were developed followed by model integration. The AI system was validated in three external validation cohorts. (EVCs, n=713). Results: Among the patients, 442 (42.18%) were RCB 0-I, 462 (44.08%) were RCB II and 144 (13.74%) were RCB III. Model-I achieved an area under the curve (AUC) of 0.975 in the PC and 0.923 in the EVCs for differentiating RCB III from RCB 0-II. Model-II distinguished RCB 0-I from RCB II-III, with an AUC of 0.976 in the PC and 0.910 in the EVCs. Subgroup analysis confirmed that the AI system was consistent across different clinical T stages and molecular subtypes. Conclusions: The multitask AI system offers a noninvasive tool for the early prediction of RCB scores in breast cancer, supporting clinical decision-making during NAC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xss关注了科研通微信公众号
1秒前
2秒前
Alvin完成签到,获得积分10
4秒前
李昕123发布了新的文献求助10
5秒前
小二郎应助风趣的泥猴桃采纳,获得10
6秒前
6秒前
早日发SCI完成签到,获得积分10
6秒前
开胃咖喱发布了新的文献求助10
7秒前
CipherSage应助人间冒险采纳,获得10
7秒前
taimeili发布了新的文献求助10
7秒前
Foch发布了新的文献求助10
8秒前
sncos完成签到,获得积分10
9秒前
汉堡包应助秀丽笑容采纳,获得10
9秒前
pdx666发布了新的文献求助10
10秒前
11秒前
NexusExplorer应助聪慧的鹤轩采纳,获得10
11秒前
weiwei完成签到 ,获得积分10
11秒前
yiya发布了新的文献求助10
11秒前
烟花应助zj3tears采纳,获得10
16秒前
彭于晏应助pdx666采纳,获得10
16秒前
JamesPei应助热情的寄瑶采纳,获得10
17秒前
17秒前
17秒前
我要向阳而生完成签到,获得积分10
17秒前
六碗鱼完成签到 ,获得积分10
18秒前
18秒前
星辰大海应助忘尘采纳,获得10
18秒前
大模型应助qyang采纳,获得10
20秒前
20秒前
21秒前
领导范儿应助颜云尔采纳,获得10
21秒前
domingo发布了新的文献求助30
21秒前
22秒前
void科学家完成签到,获得积分10
23秒前
彭于晏应助nianbing采纳,获得10
23秒前
贺兰发布了新的文献求助10
25秒前
香蕉觅云应助haochi采纳,获得10
27秒前
俊秀的凝阳完成签到,获得积分20
27秒前
28秒前
28秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629