亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

INTELLIGENT EXTRACTION OF COMPLEXITY TYPES IN FRACTAL RESERVOIR AND ITS SIGNIFICANCE TO ESTIMATE TRANSPORT PROPERTY

分形 萃取(化学) 财产(哲学) 计算机科学 石油工程 统计物理学 环境科学 数学 地质学 物理 化学 数学分析 色谱法 认识论 哲学
作者
Yi Jin,Bingrui Zhao,Y YANG,Jiabin Dong,HUIBO SONG,YUNQING TIAN,Jienan Pan
出处
期刊:Fractals [World Scientific]
卷期号:32 (03) 被引量:1
标识
DOI:10.1142/s0218348x24500701
摘要

Fractal pore structure exists widely in natural reservoir and dominates its transport property. For that, more and more effort is devoted to investigate the control mechanism on mass transfer in such a complex and multi-scale system. Apparently, effective characterization of the fractal structure is of fundamental importance. Although the newly emerged concept of complexity assembly clarified the complexity types and their assembly mechanism in a fractal system, equivalent extraction of the complexity types is the key for effective characterization. For these, we proposed a deep learning-based method to extract the original and behavioral complexity assembled in bed-packing fractal porous media for simplification and without loss of generality. In detail, the UNeXt network model was trained to obtain the independent connected regions of scaling objects with different scales, the edge detection and clustering analysis algorithms were employed to extract the number-size relationship between two successive scaling objects, and the unique inversion of fractal behavior was realized by taking the number-size model and fractal topography together. Consequently, an equivalent characterization method for fractal complex pore structure was developed based on the concept of complexity assembly. Our investigation provides a theoretical guidance and method reference for the quantitative characterization of fractal porous media that will guarantee the fundamental requirement for the accurate evaluation of the transport properties of natural reservoir.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nefelibata完成签到,获得积分10
1秒前
一定能成功!完成签到,获得积分10
3秒前
dr0422完成签到 ,获得积分10
4秒前
Johnson完成签到 ,获得积分10
5秒前
深情安青应助聪慧的伟采纳,获得10
7秒前
8秒前
索谓完成签到 ,获得积分10
10秒前
tabor发布了新的文献求助10
13秒前
16秒前
18秒前
聪慧的伟发布了新的文献求助10
21秒前
汉堡包应助layers采纳,获得10
26秒前
33秒前
橙子完成签到,获得积分10
34秒前
layers发布了新的文献求助10
38秒前
聪慧的伟完成签到,获得积分10
42秒前
45秒前
橙子发布了新的文献求助30
45秒前
qqq完成签到,获得积分10
46秒前
阳和启蛰完成签到 ,获得积分10
48秒前
Qi完成签到,获得积分10
49秒前
潘果果完成签到,获得积分10
50秒前
Lucas应助是小小李哇采纳,获得10
52秒前
lyl完成签到 ,获得积分10
1分钟前
BALANCE完成签到 ,获得积分10
1分钟前
一缕轻曲挽南墙完成签到 ,获得积分10
1分钟前
研水柔完成签到,获得积分10
1分钟前
茂如花完成签到 ,获得积分10
1分钟前
1分钟前
芒果布丁完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夏天来了发布了新的文献求助10
1分钟前
科目三应助清脆安南采纳,获得10
1分钟前
Murphy驳回了123应助
1分钟前
qiqilu发布了新的文献求助10
1分钟前
fffccclll完成签到,获得积分10
1分钟前
李爱国应助含糊的笑卉采纳,获得10
1分钟前
qiqilu发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561833
求助须知:如何正确求助?哪些是违规求助? 3135474
关于积分的说明 9412343
捐赠科研通 2835880
什么是DOI,文献DOI怎么找? 1558740
邀请新用户注册赠送积分活动 728442
科研通“疑难数据库(出版商)”最低求助积分说明 716832