Blockchain for medical collaboration: A federated learning-based approach for multi-class respiratory disease classification

计算机科学 块链 班级(哲学) 稀缺 范围(计算机科学) 人工智能 机器学习 数据挖掘 数据科学 计算机安全 程序设计语言 经济 微观经济学
作者
Abdulla All Noman,Mustafizur Rahaman,Tahmid Hasan Pranto,Rashedur M. Rahman
出处
期刊:Healthcare analytics [Elsevier]
卷期号:3: 100135-100135 被引量:19
标识
DOI:10.1016/j.health.2023.100135
摘要

The scarcity and diversity of medical data have made it challenging to build an accurate global classification model in the healthcare sector. The prime reason is privacy concerns and legal obstacles which limit data-sharing scope among institutions in healthcare. On the other hand, data from a single source is hardly sufficient to develop a universal diagnosis model. While federated learning is a potential solution to privacy and data diversity concerns (allows distributed model training), an apt aggregation process for multi-class and heterogenous medical data is still at the outset. This study aims to propose a federated learning mechanism that can effectively learn from multi-class and heterogenous respiratory medical data. The proposed system trains and aggregates the local model by leveraging blockchain technology, ensuring privacy. While aggregating the local models, we introduced the weight manipulation technique that, unlike any other studies, uses the local model test accuracy as the principal parameter. The resulting metric scores show that learning from diverse and heterogenous data, the performance of the proposed federated model is analogous to a single-source model (learning from single source data). Using the novel aggregation technique, the highest testing accuracy of 88.10% has been achieved for five classes, compared to the less complex single source model, which achieved 88.60% testing accuracy. A similar trend has been observed for models with three and four classes. For developing better synergy among organizations, this study introduces an incentive mechanism for the contributing institution while the blockchain stores the records to make the system transparent and trustworthy. The proposed mechanism has been implemented using a web system, which demonstrates how the weight manipulation technique can effectively learn from heterogeneous and multi-sourced data while preserving privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廖天佑完成签到,获得积分0
1秒前
领导范儿应助iwsaml采纳,获得10
1秒前
1秒前
zbx发布了新的文献求助10
1秒前
杨新苗发布了新的文献求助10
2秒前
南宫映榕完成签到,获得积分10
2秒前
斯文听白发布了新的文献求助30
2秒前
2秒前
3秒前
彭于晏应助帆帆帆采纳,获得10
3秒前
科研通AI2S应助陌路孤星采纳,获得10
3秒前
aaaaaa完成签到 ,获得积分10
4秒前
HiQ关闭了HiQ文献求助
4秒前
芳芳发布了新的文献求助10
4秒前
ccc完成签到 ,获得积分10
4秒前
司空豁应助zj采纳,获得10
4秒前
4秒前
QDU应助灿烂采纳,获得10
4秒前
5秒前
快乐小狗发布了新的文献求助10
5秒前
樊璐完成签到,获得积分10
5秒前
紫罗兰花海完成签到 ,获得积分10
5秒前
jintian完成签到 ,获得积分10
6秒前
6秒前
研友_ndDGVn完成签到,获得积分10
7秒前
研友_Z600BL发布了新的文献求助10
7秒前
sys完成签到,获得积分10
8秒前
胡图图完成签到,获得积分10
8秒前
崔文慧发布了新的文献求助10
8秒前
珂伟完成签到,获得积分10
8秒前
王瑜发布了新的文献求助10
9秒前
贪玩海之完成签到,获得积分10
10秒前
小花小宝和阿飞完成签到 ,获得积分10
10秒前
晨曦完成签到,获得积分10
10秒前
深情安青应助luggg采纳,获得30
11秒前
鲤鱼鸽子应助Jacob采纳,获得10
11秒前
kmario完成签到,获得积分10
12秒前
搜集达人应助CH采纳,获得10
13秒前
高冉完成签到 ,获得积分10
13秒前
QDU应助zbx采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299089
求助须知:如何正确求助?哪些是违规求助? 2934118
关于积分的说明 8467235
捐赠科研通 2607521
什么是DOI,文献DOI怎么找? 1423776
科研通“疑难数据库(出版商)”最低求助积分说明 661689
邀请新用户注册赠送积分活动 645336