Blockchain for medical collaboration: A federated learning-based approach for multi-class respiratory disease classification

计算机科学 块链 班级(哲学) 稀缺 范围(计算机科学) 人工智能 机器学习 数据挖掘 数据科学 计算机安全 经济 微观经济学 程序设计语言
作者
Abdulla All Noman,Mustafizur Rahaman,Tahmid Hasan Pranto,Rashedur M. Rahman
出处
期刊:Healthcare analytics [Elsevier]
卷期号:3: 100135-100135 被引量:19
标识
DOI:10.1016/j.health.2023.100135
摘要

The scarcity and diversity of medical data have made it challenging to build an accurate global classification model in the healthcare sector. The prime reason is privacy concerns and legal obstacles which limit data-sharing scope among institutions in healthcare. On the other hand, data from a single source is hardly sufficient to develop a universal diagnosis model. While federated learning is a potential solution to privacy and data diversity concerns (allows distributed model training), an apt aggregation process for multi-class and heterogenous medical data is still at the outset. This study aims to propose a federated learning mechanism that can effectively learn from multi-class and heterogenous respiratory medical data. The proposed system trains and aggregates the local model by leveraging blockchain technology, ensuring privacy. While aggregating the local models, we introduced the weight manipulation technique that, unlike any other studies, uses the local model test accuracy as the principal parameter. The resulting metric scores show that learning from diverse and heterogenous data, the performance of the proposed federated model is analogous to a single-source model (learning from single source data). Using the novel aggregation technique, the highest testing accuracy of 88.10% has been achieved for five classes, compared to the less complex single source model, which achieved 88.60% testing accuracy. A similar trend has been observed for models with three and four classes. For developing better synergy among organizations, this study introduces an incentive mechanism for the contributing institution while the blockchain stores the records to make the system transparent and trustworthy. The proposed mechanism has been implemented using a web system, which demonstrates how the weight manipulation technique can effectively learn from heterogeneous and multi-sourced data while preserving privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
超级元以完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
fox199753206完成签到,获得积分10
2秒前
李萍萍发布了新的文献求助20
2秒前
NexusExplorer应助FR采纳,获得10
2秒前
弦月完成签到,获得积分10
2秒前
爆米花应助动听千风采纳,获得10
3秒前
3秒前
谜迪发布了新的文献求助10
3秒前
ShaLi123发布了新的文献求助10
4秒前
kk发布了新的文献求助10
4秒前
畅快的荟发布了新的文献求助10
4秒前
4秒前
4秒前
liuziop发布了新的文献求助10
4秒前
4秒前
5秒前
我是老大应助刻苦向真采纳,获得10
5秒前
刘机智完成签到,获得积分10
5秒前
LJ完成签到,获得积分10
5秒前
5秒前
6秒前
鸣笛应助ux采纳,获得10
6秒前
弦月发布了新的文献求助100
6秒前
充电宝应助小薛采纳,获得10
6秒前
Amorphous发布了新的文献求助10
7秒前
共享精神应助王金禹采纳,获得10
8秒前
疯狂的天宇完成签到,获得积分10
9秒前
张利双发布了新的文献求助10
9秒前
9秒前
科研通AI5应助shea采纳,获得10
9秒前
Hello应助鲤鱼野狼采纳,获得10
9秒前
9秒前
10秒前
chenchen发布了新的文献求助10
10秒前
叶伟帮发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355