Blockchain for medical collaboration: A federated learning-based approach for multi-class respiratory disease classification

计算机科学 块链 班级(哲学) 稀缺 范围(计算机科学) 人工智能 机器学习 数据挖掘 数据科学 计算机安全 程序设计语言 经济 微观经济学
作者
Abdulla All Noman,Mustafizur Rahaman,Tahmid Hasan Pranto,Rashedur M. Rahman
出处
期刊:Healthcare analytics [Elsevier]
卷期号:3: 100135-100135 被引量:19
标识
DOI:10.1016/j.health.2023.100135
摘要

The scarcity and diversity of medical data have made it challenging to build an accurate global classification model in the healthcare sector. The prime reason is privacy concerns and legal obstacles which limit data-sharing scope among institutions in healthcare. On the other hand, data from a single source is hardly sufficient to develop a universal diagnosis model. While federated learning is a potential solution to privacy and data diversity concerns (allows distributed model training), an apt aggregation process for multi-class and heterogenous medical data is still at the outset. This study aims to propose a federated learning mechanism that can effectively learn from multi-class and heterogenous respiratory medical data. The proposed system trains and aggregates the local model by leveraging blockchain technology, ensuring privacy. While aggregating the local models, we introduced the weight manipulation technique that, unlike any other studies, uses the local model test accuracy as the principal parameter. The resulting metric scores show that learning from diverse and heterogenous data, the performance of the proposed federated model is analogous to a single-source model (learning from single source data). Using the novel aggregation technique, the highest testing accuracy of 88.10% has been achieved for five classes, compared to the less complex single source model, which achieved 88.60% testing accuracy. A similar trend has been observed for models with three and four classes. For developing better synergy among organizations, this study introduces an incentive mechanism for the contributing institution while the blockchain stores the records to make the system transparent and trustworthy. The proposed mechanism has been implemented using a web system, which demonstrates how the weight manipulation technique can effectively learn from heterogeneous and multi-sourced data while preserving privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一颗西柚发布了新的文献求助10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Liuya发布了新的文献求助10
2秒前
3秒前
6秒前
Fazie完成签到 ,获得积分10
6秒前
7秒前
小程发布了新的文献求助10
8秒前
to高坚果发布了新的文献求助30
9秒前
star发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
ylh发布了新的文献求助10
13秒前
nv42r8发布了新的文献求助10
16秒前
小馒头完成签到,获得积分10
18秒前
红甲发布了新的文献求助10
20秒前
我嘞个豆应助现实的访云采纳,获得10
23秒前
23秒前
Orange应助睡不醒的xx采纳,获得10
23秒前
nv42r8完成签到,获得积分10
25秒前
nml发布了新的文献求助10
26秒前
29秒前
殊量完成签到,获得积分10
30秒前
30秒前
思源应助小朱朱采纳,获得10
33秒前
orixero应助虚设采纳,获得10
34秒前
shirley发布了新的文献求助30
35秒前
研友_VZG7GZ应助害怕的蜻蜓采纳,获得10
35秒前
陈俊辉完成签到,获得积分10
36秒前
dnn_完成签到,获得积分10
36秒前
xinghhhe完成签到,获得积分10
38秒前
39秒前
cao完成签到,获得积分10
41秒前
41秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952553
求助须知:如何正确求助?哪些是违规求助? 3497981
关于积分的说明 11089564
捐赠科研通 3228449
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309