电化学
材料科学
溶解
兴奋剂
阴极
分析化学(期刊)
化学工程
电极
化学
色谱法
光电子学
工程类
物理化学
作者
Tianchi Chen,Fangchang Lin,Haoming Wu,Dongshan Zhou,Jiling Song,Jianbing Guo
标识
DOI:10.1016/j.jallcom.2023.168825
摘要
The LiNi0.5−xZnxMn1.48Y0.02O4 (x = 0.01, 0.03, 0.05) series were prepared via a sol-gel method. The mechanism of the Zn2+ and Y3+ co-doping on the structural morphology and Mn3+ ion dissolution, which led to the improved electrochemical performance of the LiNi0.5Mn1.5O4 (LNMO) sample, were studied. Compared with the pristine LNMO, Zn-Y co-doping led to increased lattice parameters, morphological evolution, decreased Mn3+ content, and better electrochemical properties. Among all the samples, LiNi0.47Zn0.03Mn1.48Y0.02O4 (0.03ZnY) showed optimal electrochemical properties at room temperature and elevated temperature. After 200 cycles, the 0.03ZnY sample showed excellent cycling performance, i.e., 134.529 mAh g−1 at 1 C (with a capacity retention of 94.7%), which was higher than the pristine sample (104.913 mAh g−1, with a capacity retention of 92.7%). Furthermore, when tested at 1 C, at a high temperature (55 °C), the 2.03Zn-Y sample reached a discharge capacity of 94.004 mAh g−1 and maintained a 79.6% capacity retention after 120 cycles, which was higher than the pristine sample (52.430 mAh g−1, 43.6% capacity retention).
科研通智能强力驱动
Strongly Powered by AbleSci AI