Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals

可解释性 计算机科学 脑电图 人工智能 模式识别(心理学) 冗余(工程) 图形 特征提取 机器学习 理论计算机科学 心理学 精神科 操作系统
作者
Shuangyong Zhang,Hong Wang,Zixi Zheng,Tianyu Liu,Weixin Li,Zishan Zhang,Yanshen Sun
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11) 被引量:5
标识
DOI:10.1142/s0129065723500557
摘要

Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷总发布了新的文献求助10
1秒前
可靠棒棒糖完成签到,获得积分10
1秒前
zhang完成签到,获得积分10
2秒前
alex发布了新的文献求助10
2秒前
洁净的寒安完成签到,获得积分10
3秒前
8秒前
wendyw完成签到,获得积分10
9秒前
阿辉发布了新的文献求助10
9秒前
爱静静应助小吴采纳,获得10
11秒前
12秒前
Iris完成签到,获得积分10
12秒前
神勇灵竹完成签到 ,获得积分10
13秒前
16秒前
kitsuki完成签到,获得积分10
16秒前
Ashmitte完成签到,获得积分10
17秒前
小智完成签到,获得积分10
17秒前
du发布了新的文献求助30
17秒前
happyboy2008完成签到,获得积分10
18秒前
123完成签到,获得积分10
19秒前
123完成签到 ,获得积分10
21秒前
21秒前
22秒前
linuo发布了新的文献求助10
23秒前
23秒前
tao完成签到 ,获得积分10
24秒前
25秒前
26秒前
复杂念梦完成签到 ,获得积分10
26秒前
超级玛丽完成签到 ,获得积分10
28秒前
Rui完成签到,获得积分10
29秒前
小吴完成签到,获得积分20
30秒前
NINI完成签到 ,获得积分10
30秒前
cuipanda发布了新的文献求助10
30秒前
喵喵完成签到,获得积分10
31秒前
32秒前
32秒前
Gaye发布了新的文献求助10
32秒前
YCG完成签到,获得积分10
34秒前
柳寄柔完成签到,获得积分10
34秒前
agou完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175