Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals

可解释性 计算机科学 脑电图 人工智能 模式识别(心理学) 冗余(工程) 图形 特征提取 机器学习 理论计算机科学 心理学 操作系统 精神科
作者
Shuangyong Zhang,Hong Wang,Zixi Zheng,Tianyu Liu,Weixin Li,Zishan Zhang,Yanshen Sun
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11) 被引量:9
标识
DOI:10.1142/s0129065723500557
摘要

Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助舒适的思枫采纳,获得50
1秒前
1秒前
2秒前
嗝嗝发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
Canda完成签到 ,获得积分10
4秒前
筱筱完成签到 ,获得积分10
4秒前
111完成签到,获得积分20
4秒前
尘烟完成签到,获得积分10
6秒前
cc发布了新的文献求助10
6秒前
xuxu发布了新的文献求助30
6秒前
6秒前
昂不去发布了新的文献求助10
7秒前
可靠的毛衣完成签到 ,获得积分10
7秒前
111发布了新的文献求助10
7秒前
汤瀚文发布了新的文献求助10
8秒前
完美世界应助观鹤轩采纳,获得10
8秒前
zoiaii完成签到 ,获得积分10
9秒前
尘烟发布了新的文献求助10
9秒前
degg完成签到,获得积分10
9秒前
9秒前
HJJHJH发布了新的文献求助10
9秒前
10秒前
14秒前
zzy发布了新的文献求助20
15秒前
大模型应助Cris采纳,获得10
15秒前
SuHo发布了新的文献求助30
15秒前
月上云飞给月上云飞的求助进行了留言
17秒前
18秒前
梦梦婕发布了新的文献求助10
18秒前
颖永爱完成签到,获得积分10
20秒前
ZhiningZ完成签到 ,获得积分10
20秒前
21秒前
科研通AI5应助HJJHJH采纳,获得10
22秒前
23秒前
豆豆完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005969
求助须知:如何正确求助?哪些是违规求助? 4249507
关于积分的说明 13241150
捐赠科研通 4049265
什么是DOI,文献DOI怎么找? 2215242
邀请新用户注册赠送积分活动 1225168
关于科研通互助平台的介绍 1145745