已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-View Graph Contrastive Learning via Adaptive Channel Optimization for Depression Detection in EEG Signals

可解释性 计算机科学 脑电图 人工智能 模式识别(心理学) 冗余(工程) 图形 特征提取 机器学习 理论计算机科学 心理学 操作系统 精神科
作者
Shuangyong Zhang,Hong Wang,Zixi Zheng,Tianyu Liu,Weixin Li,Zishan Zhang,Yanshen Sun
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:33 (11): 2350055-2350055 被引量:11
标识
DOI:10.1142/s0129065723500557
摘要

Automated detection of depression using Electroencephalogram (EEG) signals has become a promising application in advanced bioinformatics technology. Although current methods have achieved high detection performance, several challenges still need to be addressed: (1) Previous studies do not consider data redundancy when modeling multi-channel EEG signals, resulting in some unrecognized noise channels remaining. (2) Most works focus on the functional connection of EEG signals, ignoring their spatial proximity. The spatial topological structure of EEG signals has not been fully utilized to capture more fine-grained features. (3) Prior depression detection models fail to provide interpretability. To address these challenges, this paper proposes a new model, Multi-view Graph Contrastive Learning via Adaptive Channel Optimization (MGCL-ACO) for depression detection in EEG signals. Specifically, the proposed model first selects the critical channels by maximizing the mutual information between tracks and labels of EEG signals to eliminate data redundancy. Then, the MGCL-ACO model builds two similarity metric views based on functional connectivity and spatial proximity. MGCL-ACO constructs the feature extraction module by graph convolutions and contrastive learning to capture more fine-grained features of different perspectives. Finally, our model provides interpretability by visualizing a brain map related to the significance scores of the selected channels. Extensive experiments have been performed on public datasets, and the results show that our proposed model outperforms the most advanced baselines. Our proposed model not only provides a promising approach for automated depression detection using optimal EEG signals but also has the potential to improve the accuracy and interpretability of depression diagnosis in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白完成签到,获得积分10
5秒前
wen发布了新的文献求助50
5秒前
7788完成签到,获得积分10
6秒前
英俊的铭应助soda采纳,获得10
7秒前
CL完成签到,获得积分20
7秒前
9秒前
皮卡丘完成签到 ,获得积分10
9秒前
斯文败类应助Ethan采纳,获得10
9秒前
10秒前
Echopotter完成签到,获得积分10
11秒前
12秒前
小白发布了新的文献求助10
13秒前
cc发布了新的文献求助10
15秒前
鱼鱼发布了新的文献求助10
15秒前
浔初先生完成签到,获得积分10
15秒前
16秒前
姚美阁完成签到 ,获得积分10
17秒前
17秒前
冷静傲丝完成签到 ,获得积分10
17秒前
18秒前
洪登校发布了新的文献求助10
18秒前
19秒前
21秒前
Moon完成签到,获得积分20
21秒前
soda发布了新的文献求助10
21秒前
dd给dd的求助进行了留言
23秒前
23秒前
医学生发布了新的文献求助10
25秒前
zzzzzz完成签到,获得积分10
25秒前
子南完成签到,获得积分10
25秒前
26秒前
ZDSHI发布了新的文献求助30
26秒前
我是老大应助小胖胖采纳,获得20
26秒前
26秒前
hahaha123发布了新的文献求助10
28秒前
29秒前
31秒前
太就发布了新的文献求助10
32秒前
难过雁开完成签到,获得积分10
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663839
求助须知:如何正确求助?哪些是违规求助? 4853290
关于积分的说明 15105929
捐赠科研通 4822071
什么是DOI,文献DOI怎么找? 2581192
邀请新用户注册赠送积分活动 1535374
关于科研通互助平台的介绍 1493724