Electrolyte induced synergistic construction of cathode electrolyte interphase and capture of reactive free radicals for safer high energy density lithium-ion battery

热失控 电解质 阴极 阳极 材料科学 电池(电) 法拉第效率 电化学 锂离子电池 化学工程 化学 电极 热力学 功率(物理) 物理 物理化学 工程类
作者
Mengfei Ding,Xuning Feng,Yong Peng,Jingjing Tong,Hou B,Yalan Xing,Weifeng Zhang,Li Wang,Yu Wu,Jiabin Lv,Chunyan Luo,De-Jun Xiong,Shichao Zhang,Minggao Ouyang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:87: 207-214 被引量:15
标识
DOI:10.1016/j.jechem.2023.07.045
摘要

As the energy density of battery increases rapidly, lithium-ion batteries (LIBs) are facing serious safety issue with thermal runaway, which largely limits the large-scale applications of high-energy-density LIBs. It is generally agreed that the chemical crosstalk between the cathode and anode leads to thermal runaway of LIBs. Herein, a multifunctional high safety electrolyte is designed with synergistic construction of cathode electrolyte interphase and capture of reactive free radicals to limit the intrinsic pathway of thermal runaway. The cathode electrolyte interphase not only resists the gas attack from the anode but suppresses the parasitic side reactions induced by electrolyte. And the function of free radical capture has the ability of reducing heat release from thermal runaway of battery. The dual strategy improves the intrinsic safety of battery prominently that the triggering temperature of thermal runaway is increased by 24.4 °C and the maximum temperature is reduced by 177.7 °C. Simultaneously, the thermal runaway propagation in module can be self-quenched. Moreover, the electrolyte design balances the trade-off of electrochemical and safety performance of high-energy batteries. The capacity retention of LiNi0.8Co0.1Mn0.1O2|graphite pouch cell has been significantly increased from 53.85% to 97.05% with higher coulombic efficiency of 99.94% at operating voltage extended up to 4.5 V for 200 cycles. Therefore, this work suggests a feasible strategy to mitigate the safety risk of high-energy-density LIBs without sacrificing electrochemical performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YQ完成签到 ,获得积分20
2秒前
2秒前
星星子发布了新的文献求助10
3秒前
3秒前
SHYSHYLONG发布了新的文献求助10
4秒前
4秒前
吃不起橘子了完成签到,获得积分10
4秒前
6秒前
米一早完成签到,获得积分10
7秒前
9秒前
香雪若梅完成签到,获得积分10
9秒前
11秒前
11秒前
11秒前
yuyu完成签到 ,获得积分10
11秒前
李山鬼发布了新的文献求助10
11秒前
12秒前
一一一完成签到,获得积分10
12秒前
Jana应助queer采纳,获得10
15秒前
无理发布了新的文献求助10
15秒前
16秒前
华华发布了新的文献求助10
16秒前
tangjun发布了新的文献求助10
16秒前
16秒前
一一一发布了新的文献求助10
16秒前
不知名网友完成签到,获得积分10
17秒前
L.C.完成签到,获得积分10
17秒前
17秒前
眰恦完成签到 ,获得积分10
17秒前
18秒前
18秒前
黄金天下发布了新的文献求助10
19秒前
七斤文发布了新的文献求助10
20秒前
L123发布了新的文献求助10
20秒前
玛茵糖发布了新的文献求助20
22秒前
英俊的铭应助星星子采纳,获得10
23秒前
充电宝应助华华采纳,获得10
23秒前
23秒前
隐形半烟完成签到,获得积分10
24秒前
阿绿发布了新的文献求助10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455164
求助须知:如何正确求助?哪些是违规求助? 3050441
关于积分的说明 9021374
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502413
科研通“疑难数据库(出版商)”最低求助积分说明 694501
邀请新用户注册赠送积分活动 693293