Experimental study on CO 2 flooding characteristics in low-permeability fractured reservoirs

磁导率 石油工程 超临界流体 提高采收率 水驱 地质学 材料科学 岩土工程 化学 生物化学 有机化学
作者
Tong Zhang,Guoliang Zhou,Ming Tang,Jun Wu,Xin Yang,Zhu Mao,Zhizheng Xie
出处
期刊:Energy Sources, Part A: Recovery, Utilization, And Environmental Effects [Informa]
卷期号:45 (4): 11637-11649
标识
DOI:10.1080/15567036.2023.2263419
摘要

ABSTRACTCO2 flooding in oil reservoir is a complex process, which includes fluid flow in fractured sandstone and interaction of CO2 and displaced oil. In order to thoroughly understand the CO2 flooding characteristics in low-permeability fractured reservoirs, a series of CO2 flooding experiments were conducted based on the multi-field coupling experimental system. Considering the difference of the fractured cores, pore cores and pore-fracture model, the effect of fracture, injection pressure, CO2 phase, and heterogeneity of horizontal composite on the CO2 flooding were analyzed. The results show that the oil recovery of fractured core was 46.96%, 7.13% higher than that of pore core, and there was no relatively stable gas-oil ratio (GOR) stage. For the pore-fracture model, the final recovery of two models increased from 49.45% to 45.86% at 2 MPa to 78.83% and 77.35% at 8 MPa, and the pore core was the main contributor to enhance oil recovery. The supercritical CO2 (sc-CO2) enhanced the oil recovery in post-gas breakthrough state, which accounted for final recovery 65.02%. Compared with the vertical layered heterogeneity, the horizontal composite heterogeneity had less influence on the final oil recovery, with differences of below 2%, and the highest CO2 utilization rate was occurred at the permeability model of Low-High-Low. The work provides insight on oil recovery improvement of CO2 flooding in low-permeability fractured reservoirs.KEYWORDS: Low-permeability fractured sandstoneCO2 floodingpore-fracture modeloil recoverygas-oil ratio AcknowledgementsThe authors want to acknowledge the great help of the State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan, Anhui, China.Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionTong Zhang: Conceptualization, writing – review and editing, funding acquisition, supervision. Guoliang Zhou: Conceptualization, formal analysis, investigation, writing – original draft. Ming Tang: writing – original draft. Jun Wu: writing – review and editing. Xin Yang: writing – review and editing Ming Zhu: writing – reviewing. Zhizheng Xie: validation. The manuscript was written through the contributions of all authors. All authors have read and agreed to the published version of the manuscript.Additional informationFundingThis work was supported by Excellent Youth Project of Anhui Province (2022AH030086), China; Natural Science Research Project of University in Anhui (KJ2021ZD0050), China; National Key Research and Development Plan Project (2022XBZD-09); Institute of Energy, Hefei Comprehensive National Science Center (Grant No.21KZS216), China; Collaborative Innovation Project of Colleges and Universities of Anhui Province (Grant No. GXXT-2021- 019), China; the National Youth Science Foundation (Grant no. 51904011), China; the Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (Grant No. SKLMRDPC19ZZ05), China; Open Fund of National Local Joint Engineering Research Center for Safe and Accurate Coal Mining (EC2021002).Notes on contributorsTong ZhangTong Zhang, male, born in 1990, Associate professor, mainly engaged in the coal and co-associated resource exploitation.Guoliang ZhouGuoliang Zhou, male, born in 1999, Master candidate, mainly engaged in the CO2 enhanced oil recovery technology.Ming TangMing Tang, male, born in 1997, PhD candidate, mainly engaged in the CO2 enhanced oil recovery and carbon capture and storage.Jun WuJun Wu, male, born in 1999, Master candidate, mainly engaged in the prevention and control of coal mine water disasters.Xin YangXin Yang, male, born in 1997, PhD candidate, mainly engaged in uranium mining extractionMing ZhuMing Zhu, female, born in 1999, Master candidate, mainly engaged in the CO2 enhanced oil recovery technology.Zhizheng XieZhizheng Xie, male, born in 1999, Master candidate, mainly engaged in the hydraulic fracturing technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xinghe123完成签到,获得积分10
1秒前
RE完成签到 ,获得积分10
2秒前
桥豆麻袋完成签到,获得积分10
4秒前
ezvsnoc完成签到,获得积分10
5秒前
宁霸完成签到,获得积分0
7秒前
妍宝贝完成签到 ,获得积分10
7秒前
8秒前
xuxu完成签到 ,获得积分10
8秒前
8秒前
取法乎上完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
MichelleLing完成签到,获得积分10
10秒前
12秒前
MichelleLing发布了新的文献求助10
13秒前
1459完成签到,获得积分10
13秒前
整齐的电源完成签到 ,获得积分10
14秒前
14秒前
饱满芷卉完成签到,获得积分10
15秒前
离岸完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
糖炒栗子完成签到 ,获得积分10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
001完成签到,获得积分10
18秒前
19秒前
22秒前
量子星尘发布了新的文献求助10
24秒前
寒冷的奇异果完成签到,获得积分10
28秒前
ypres完成签到 ,获得积分10
28秒前
29秒前
司藤完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071