Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning

医学 前列腺癌 前列腺 概化理论 磁共振成像 卷积神经网络 肿瘤科 内科学 癌症 放射科 人工智能 计算机科学 统计 数学
作者
S. M. Khaled Hossain,S. M. Khaled Hossain,Arman Avesta,Abhay Nene,Ryan Maresca,Sanjay Aneja
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e393-e393
标识
DOI:10.1016/j.ijrobp.2023.06.1517
摘要

Given the increasing number of treatment options for patients with localized prostate cancer (PCa), there is a need for biomarkers to aid in risk stratification. Specifically, novel biomarkers can aid in the identification of high-risk phenotypes among similar patients in traditional NCCN risk groupings. One promising area for development is using pre-treatment prostate MRI to identify imaging biomarkers to identify prostate cancer patients at highest risk for recurrence. We hypothesized that deep learning could be leveraged to identify imaging biomarkers of aggressive PCa from pre-treatment prostate MRIs.Our study included 1,020 patients treated at our institution between 2010-2022. Given pathologic extraprostatic extension (EPE) and seminal vesicle invasion (SVI) are associated with higher risk of treatment failure, we hypothesized that deep learning models which identified radiographic EPE and SVI would provide non-invasive imaging biomarkers associated with PCa prognosis. We trained two separate deep learning models using convolutional neural networks to predict SVI and EPE respectively. The model inputs were T2W prostate MRIs (n = 894) and models consisted of 8 convolutional layers. Dropout, L2 regularization, and data augmentation were used to improve model generalizability and reduce overfitting. Discriminatory ability of each model was measured using AUC on a blinded external test set of 221 patients. To assess the clinical utility of our imaging biomarkers, log-rank tests were used to evaluate biochemical free survival (BFS) for patients classified as high risk to patients classified as low risk. Biochemical failure was defined as post-treatment PSA >0.1 for patients who underwent radical prostatectomy (RP) or PSA >2ng/ml above nadir for patients receiving radiation therapy.Within our cohort of 1,020 patients the median age was 66 with a median follow up of 4 years. 49.3% (n = 503) underwent RP and 50.7% (n = 517) received EBRT. 4% (n = 41) were low risk, 62.4% (n = 636) were intermediate risk, and 33% (n = 337) were high risk based on NCCN criteria. Deep learning models showed good discriminatory ability for both EPE (AUC 0.66) and SVI (AUC 0.74). Both imaging biomarkers showed prognostic ability to identify high risk prostate phenotypes. Patients deemed high risk based on EPE classifier had worse BFS (median 5 vs 9 years, p<.001). Similarly, patients classified as high risk based on SVI also showed worse BFS (median 5 vs 9 years, p = 0.024). Among intermediate risk patients, EPE biomarker showed an ability to identify high risk phenotypes (median 6 vs 9 years, p = 0.024).Deep learning classifiers of prostate MRIs demonstrated the ability to stratify high-risk prostate cancer phenotypes beyond traditional risk paradigms. Imaging biomarkers represent a non-invasive method to help aid in the personalization of treatment for patients with localized prostate cancer and identify patients who potentially require treatment escalation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼啦呼啦完成签到 ,获得积分10
刚刚
寒风完成签到,获得积分10
刚刚
晴云发布了新的文献求助10
1秒前
朴素羊完成签到 ,获得积分10
3秒前
3秒前
小马甲应助小王采纳,获得10
3秒前
俭朴羊青完成签到,获得积分10
4秒前
张张完成签到,获得积分10
6秒前
tomorrow完成签到 ,获得积分10
7秒前
糖炒栗子完成签到,获得积分10
8秒前
现代期待完成签到,获得积分10
8秒前
小黎完成签到,获得积分10
9秒前
呼呼呼完成签到,获得积分10
9秒前
无花果应助晴云采纳,获得10
9秒前
寸草的晖完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
小燕子发布了新的文献求助10
12秒前
13秒前
顺顺完成签到,获得积分10
14秒前
jiachun完成签到,获得积分10
14秒前
jiaolulu发布了新的文献求助10
14秒前
小王发布了新的文献求助10
15秒前
queen814完成签到,获得积分10
15秒前
简单发布了新的文献求助10
16秒前
一只呆果蝇完成签到,获得积分10
16秒前
Eternity完成签到,获得积分10
17秒前
研友_VZG7GZ应助落后从阳采纳,获得10
17秒前
乐观寻绿完成签到,获得积分10
18秒前
Hover完成签到,获得积分0
18秒前
莫晓岚完成签到,获得积分10
18秒前
123完成签到 ,获得积分10
19秒前
所所应助JSY采纳,获得30
19秒前
默默的立辉完成签到,获得积分10
19秒前
Yh完成签到,获得积分10
19秒前
引子完成签到,获得积分10
21秒前
机智的阿振完成签到,获得积分10
22秒前
KatzeBaliey完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029