亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning

医学 前列腺癌 前列腺 概化理论 磁共振成像 卷积神经网络 肿瘤科 内科学 癌症 放射科 人工智能 计算机科学 统计 数学
作者
S. M. Khaled Hossain,S. M. Khaled Hossain,Arman Avesta,Abhay Nene,Ryan Maresca,Sanjay Aneja
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e393-e393
标识
DOI:10.1016/j.ijrobp.2023.06.1517
摘要

Given the increasing number of treatment options for patients with localized prostate cancer (PCa), there is a need for biomarkers to aid in risk stratification. Specifically, novel biomarkers can aid in the identification of high-risk phenotypes among similar patients in traditional NCCN risk groupings. One promising area for development is using pre-treatment prostate MRI to identify imaging biomarkers to identify prostate cancer patients at highest risk for recurrence. We hypothesized that deep learning could be leveraged to identify imaging biomarkers of aggressive PCa from pre-treatment prostate MRIs.Our study included 1,020 patients treated at our institution between 2010-2022. Given pathologic extraprostatic extension (EPE) and seminal vesicle invasion (SVI) are associated with higher risk of treatment failure, we hypothesized that deep learning models which identified radiographic EPE and SVI would provide non-invasive imaging biomarkers associated with PCa prognosis. We trained two separate deep learning models using convolutional neural networks to predict SVI and EPE respectively. The model inputs were T2W prostate MRIs (n = 894) and models consisted of 8 convolutional layers. Dropout, L2 regularization, and data augmentation were used to improve model generalizability and reduce overfitting. Discriminatory ability of each model was measured using AUC on a blinded external test set of 221 patients. To assess the clinical utility of our imaging biomarkers, log-rank tests were used to evaluate biochemical free survival (BFS) for patients classified as high risk to patients classified as low risk. Biochemical failure was defined as post-treatment PSA >0.1 for patients who underwent radical prostatectomy (RP) or PSA >2ng/ml above nadir for patients receiving radiation therapy.Within our cohort of 1,020 patients the median age was 66 with a median follow up of 4 years. 49.3% (n = 503) underwent RP and 50.7% (n = 517) received EBRT. 4% (n = 41) were low risk, 62.4% (n = 636) were intermediate risk, and 33% (n = 337) were high risk based on NCCN criteria. Deep learning models showed good discriminatory ability for both EPE (AUC 0.66) and SVI (AUC 0.74). Both imaging biomarkers showed prognostic ability to identify high risk prostate phenotypes. Patients deemed high risk based on EPE classifier had worse BFS (median 5 vs 9 years, p<.001). Similarly, patients classified as high risk based on SVI also showed worse BFS (median 5 vs 9 years, p = 0.024). Among intermediate risk patients, EPE biomarker showed an ability to identify high risk phenotypes (median 6 vs 9 years, p = 0.024).Deep learning classifiers of prostate MRIs demonstrated the ability to stratify high-risk prostate cancer phenotypes beyond traditional risk paradigms. Imaging biomarkers represent a non-invasive method to help aid in the personalization of treatment for patients with localized prostate cancer and identify patients who potentially require treatment escalation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
16秒前
发呆员发布了新的文献求助10
22秒前
思源应助发呆员采纳,获得100
29秒前
ceeray23发布了新的文献求助30
1分钟前
1分钟前
长情砖头完成签到 ,获得积分20
1分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
lululemontree完成签到,获得积分10
2分钟前
常有李完成签到,获得积分10
2分钟前
勤恳雅莉应助ceeray23采纳,获得50
3分钟前
敞敞亮亮完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
mochalv123完成签到 ,获得积分10
4分钟前
faith完成签到,获得积分10
4分钟前
Alvin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
彭于晏应助ceeray23采纳,获得20
4分钟前
盛事不朽完成签到 ,获得积分10
4分钟前
打打应助ceeray23采纳,获得20
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
科研通AI2S应助ceeray23采纳,获得20
4分钟前
JamesPei应助ceeray23采纳,获得30
4分钟前
爆米花应助ceeray23采纳,获得20
4分钟前
DocChen完成签到,获得积分10
4分钟前
4分钟前
DocChen发布了新的文献求助10
4分钟前
faith发布了新的文献求助10
4分钟前
丁静完成签到 ,获得积分0
5分钟前
lanxinge完成签到 ,获得积分10
5分钟前
Owen应助科研通管家采纳,获得10
6分钟前
所所应助科研通管家采纳,获得10
6分钟前
共享精神应助ceeray23采纳,获得20
6分钟前
我是老大应助ceeray23采纳,获得20
6分钟前
丘比特应助ceeray23采纳,获得20
6分钟前
李健应助ceeray23采纳,获得20
6分钟前
慕青应助ceeray23采纳,获得20
6分钟前
xiaoyuan发布了新的文献求助10
6分钟前
7分钟前
Alisha完成签到,获得积分10
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584770
求助须知:如何正确求助?哪些是违规求助? 4668652
关于积分的说明 14771555
捐赠科研通 4613838
什么是DOI,文献DOI怎么找? 2530220
邀请新用户注册赠送积分活动 1499078
关于科研通互助平台的介绍 1467523