Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning

医学 前列腺癌 前列腺 概化理论 磁共振成像 卷积神经网络 肿瘤科 内科学 癌症 放射科 人工智能 计算机科学 统计 数学
作者
S. M. Khaled Hossain,S. M. Khaled Hossain,Arman Avesta,Abhay Nene,Ryan Maresca,Sanjay Aneja
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e393-e393
标识
DOI:10.1016/j.ijrobp.2023.06.1517
摘要

Given the increasing number of treatment options for patients with localized prostate cancer (PCa), there is a need for biomarkers to aid in risk stratification. Specifically, novel biomarkers can aid in the identification of high-risk phenotypes among similar patients in traditional NCCN risk groupings. One promising area for development is using pre-treatment prostate MRI to identify imaging biomarkers to identify prostate cancer patients at highest risk for recurrence. We hypothesized that deep learning could be leveraged to identify imaging biomarkers of aggressive PCa from pre-treatment prostate MRIs.Our study included 1,020 patients treated at our institution between 2010-2022. Given pathologic extraprostatic extension (EPE) and seminal vesicle invasion (SVI) are associated with higher risk of treatment failure, we hypothesized that deep learning models which identified radiographic EPE and SVI would provide non-invasive imaging biomarkers associated with PCa prognosis. We trained two separate deep learning models using convolutional neural networks to predict SVI and EPE respectively. The model inputs were T2W prostate MRIs (n = 894) and models consisted of 8 convolutional layers. Dropout, L2 regularization, and data augmentation were used to improve model generalizability and reduce overfitting. Discriminatory ability of each model was measured using AUC on a blinded external test set of 221 patients. To assess the clinical utility of our imaging biomarkers, log-rank tests were used to evaluate biochemical free survival (BFS) for patients classified as high risk to patients classified as low risk. Biochemical failure was defined as post-treatment PSA >0.1 for patients who underwent radical prostatectomy (RP) or PSA >2ng/ml above nadir for patients receiving radiation therapy.Within our cohort of 1,020 patients the median age was 66 with a median follow up of 4 years. 49.3% (n = 503) underwent RP and 50.7% (n = 517) received EBRT. 4% (n = 41) were low risk, 62.4% (n = 636) were intermediate risk, and 33% (n = 337) were high risk based on NCCN criteria. Deep learning models showed good discriminatory ability for both EPE (AUC 0.66) and SVI (AUC 0.74). Both imaging biomarkers showed prognostic ability to identify high risk prostate phenotypes. Patients deemed high risk based on EPE classifier had worse BFS (median 5 vs 9 years, p<.001). Similarly, patients classified as high risk based on SVI also showed worse BFS (median 5 vs 9 years, p = 0.024). Among intermediate risk patients, EPE biomarker showed an ability to identify high risk phenotypes (median 6 vs 9 years, p = 0.024).Deep learning classifiers of prostate MRIs demonstrated the ability to stratify high-risk prostate cancer phenotypes beyond traditional risk paradigms. Imaging biomarkers represent a non-invasive method to help aid in the personalization of treatment for patients with localized prostate cancer and identify patients who potentially require treatment escalation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yolo完成签到,获得积分10
3秒前
聪慧的惜芹完成签到,获得积分10
3秒前
nico完成签到 ,获得积分10
3秒前
简奥斯汀完成签到 ,获得积分10
4秒前
轩辕德地完成签到,获得积分10
4秒前
PPP发布了新的文献求助20
5秒前
5秒前
可夫司机完成签到 ,获得积分10
8秒前
张姣姣完成签到,获得积分10
12秒前
陈海伦完成签到 ,获得积分10
13秒前
善学以致用应助1234H采纳,获得10
14秒前
15秒前
勤恳马里奥应助Erich采纳,获得10
17秒前
overThat发布了新的文献求助10
19秒前
目土土发布了新的文献求助10
21秒前
ferritin完成签到 ,获得积分10
22秒前
路寻完成签到 ,获得积分10
24秒前
24秒前
云轻完成签到 ,获得积分10
24秒前
小酒馆完成签到,获得积分10
27秒前
论文多多完成签到,获得积分10
27秒前
28秒前
含蓄绿兰完成签到,获得积分10
28秒前
上官若男应助chrysan采纳,获得10
28秒前
学无止境完成签到 ,获得积分10
28秒前
广州南完成签到 ,获得积分10
28秒前
传奇3应助eyu采纳,获得10
29秒前
yaoyh_gc完成签到,获得积分10
33秒前
明明发布了新的文献求助10
33秒前
要减肥的卷心菜完成签到,获得积分10
33秒前
NexusExplorer应助GT采纳,获得10
35秒前
西松屋地铁完成签到 ,获得积分10
35秒前
PPP完成签到,获得积分10
36秒前
乐乐应助Erich采纳,获得10
37秒前
39秒前
李朝富完成签到,获得积分10
41秒前
青阳完成签到,获得积分10
42秒前
Febrine0502完成签到,获得积分10
42秒前
chrysan发布了新的文献求助10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137155
求助须知:如何正确求助?哪些是违规求助? 2788182
关于积分的说明 7784837
捐赠科研通 2444146
什么是DOI,文献DOI怎么找? 1299822
科研通“疑难数据库(出版商)”最低求助积分说明 625574
版权声明 601011