Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning

医学 前列腺癌 前列腺 概化理论 磁共振成像 卷积神经网络 肿瘤科 内科学 癌症 放射科 人工智能 计算机科学 统计 数学
作者
S. M. Khaled Hossain,S. M. Khaled Hossain,Arman Avesta,Abhay Nene,Ryan Maresca,Sanjay Aneja
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:117 (2): e393-e393
标识
DOI:10.1016/j.ijrobp.2023.06.1517
摘要

Given the increasing number of treatment options for patients with localized prostate cancer (PCa), there is a need for biomarkers to aid in risk stratification. Specifically, novel biomarkers can aid in the identification of high-risk phenotypes among similar patients in traditional NCCN risk groupings. One promising area for development is using pre-treatment prostate MRI to identify imaging biomarkers to identify prostate cancer patients at highest risk for recurrence. We hypothesized that deep learning could be leveraged to identify imaging biomarkers of aggressive PCa from pre-treatment prostate MRIs.Our study included 1,020 patients treated at our institution between 2010-2022. Given pathologic extraprostatic extension (EPE) and seminal vesicle invasion (SVI) are associated with higher risk of treatment failure, we hypothesized that deep learning models which identified radiographic EPE and SVI would provide non-invasive imaging biomarkers associated with PCa prognosis. We trained two separate deep learning models using convolutional neural networks to predict SVI and EPE respectively. The model inputs were T2W prostate MRIs (n = 894) and models consisted of 8 convolutional layers. Dropout, L2 regularization, and data augmentation were used to improve model generalizability and reduce overfitting. Discriminatory ability of each model was measured using AUC on a blinded external test set of 221 patients. To assess the clinical utility of our imaging biomarkers, log-rank tests were used to evaluate biochemical free survival (BFS) for patients classified as high risk to patients classified as low risk. Biochemical failure was defined as post-treatment PSA >0.1 for patients who underwent radical prostatectomy (RP) or PSA >2ng/ml above nadir for patients receiving radiation therapy.Within our cohort of 1,020 patients the median age was 66 with a median follow up of 4 years. 49.3% (n = 503) underwent RP and 50.7% (n = 517) received EBRT. 4% (n = 41) were low risk, 62.4% (n = 636) were intermediate risk, and 33% (n = 337) were high risk based on NCCN criteria. Deep learning models showed good discriminatory ability for both EPE (AUC 0.66) and SVI (AUC 0.74). Both imaging biomarkers showed prognostic ability to identify high risk prostate phenotypes. Patients deemed high risk based on EPE classifier had worse BFS (median 5 vs 9 years, p<.001). Similarly, patients classified as high risk based on SVI also showed worse BFS (median 5 vs 9 years, p = 0.024). Among intermediate risk patients, EPE biomarker showed an ability to identify high risk phenotypes (median 6 vs 9 years, p = 0.024).Deep learning classifiers of prostate MRIs demonstrated the ability to stratify high-risk prostate cancer phenotypes beyond traditional risk paradigms. Imaging biomarkers represent a non-invasive method to help aid in the personalization of treatment for patients with localized prostate cancer and identify patients who potentially require treatment escalation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季节的伤悲完成签到 ,获得积分10
2秒前
XiaoZhu发布了新的文献求助10
2秒前
刘小天发布了新的文献求助10
2秒前
小鱼发布了新的文献求助10
3秒前
cora完成签到,获得积分10
3秒前
甜美帅哥完成签到,获得积分10
3秒前
3秒前
kaka发布了新的文献求助10
3秒前
yther发布了新的文献求助10
4秒前
6秒前
王鹿驳回了Owen应助
7秒前
量子星尘发布了新的文献求助10
7秒前
QWSS发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
小旋风完成签到,获得积分10
12秒前
12秒前
蓝天发布了新的文献求助10
13秒前
SciGPT应助含糊的冰安采纳,获得10
14秒前
14秒前
zhangjin2969发布了新的文献求助10
15秒前
renovel发布了新的文献求助20
15秒前
16秒前
一二发布了新的文献求助10
16秒前
斯文败类应助肖善若采纳,获得10
16秒前
哈哈哈完成签到,获得积分10
17秒前
锅包肉发布了新的文献求助10
17秒前
记忆里的阳光完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
肖旻发布了新的文献求助10
19秒前
20秒前
20秒前
jiahao完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770404
求助须知:如何正确求助?哪些是违规求助? 5584883
关于积分的说明 15424186
捐赠科研通 4904015
什么是DOI,文献DOI怎么找? 2638456
邀请新用户注册赠送积分活动 1586286
关于科研通互助平台的介绍 1541405