A YOLO-NL object detector for real-time detection

计算机科学 目标检测 稳健性(进化) 人工智能 推论 探测器 残余物 升级 对象(语法) 深度学习 计算机视觉 过程(计算) 比例(比率) 模式识别(心理学) 机器学习 算法 电信 生物化学 化学 物理 量子力学 基因 操作系统
作者
Yan Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122256-122256 被引量:102
标识
DOI:10.1016/j.eswa.2023.122256
摘要

In recent years, YOLO object detection models have undergone significant advancement due to the success of novel deep convolutional networks. The success of these YOLO models is often attributed to their use of guidance techniques, such as expertly tailored deeper backbone and meticulously crafted detector head, which provides effective mechanisms to tradeoff between accuracy and efficiency. However, these sluggish-reasoning models are not capable of handling false detection and negative phenomena, facing challenges include improving the robustness of scaled objects detection against occlude and densely sophisticated scenarios. To address these limitations, we propose a novel object detector, You Only Look Once and None Left (YOLO-NL). Our model includes a novel global dynamic label assignment strategy, which allocates labels for specific anchors to maintain a balance between higher precision detection and finer localization. To enhance the detection capability of multi-scale objects in complex scenes, we separately upgrade CSPNet and PANet using the shortest-longest gradient strategy and self-attention mechanism. To meet the need for fast inference, we propose the Rep-CSPNet network using the reparameterization method to convert residual convolutions to ghost linear operations. Additionally, we accelerate the feature extraction process by deploying the serial SSPP structure. The proposed model is robust to scale objects against negative effectives such as dust, dense, ambiguous, and obstructed scenes. YOLO-NL achieved a mAP of 52.9% on the COCO 2017 test dataset, exhibiting a significant improvement of 2.64% compared to the baseline YOLOX. It is worth noting that YOLO-NL can perform high-accuracy and high-speed face mask detection in real-life scenarios. The YOLO-NL model was employed on self-built FMD and large open-source datasets, and the results show that it outperforms the other state-of-the-art methods, achieving 98.8% accuracy while maintaining 130 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
王宽宽宽完成签到,获得积分10
1秒前
1秒前
科研通AI6应助13nnk采纳,获得10
2秒前
程昌盛完成签到,获得积分10
2秒前
Aprilapple发布了新的文献求助10
2秒前
3秒前
华仔应助一十六采纳,获得10
3秒前
3秒前
完美世界应助王彦林采纳,获得10
3秒前
去玩儿完成签到,获得积分20
4秒前
4秒前
王宽宽宽发布了新的文献求助10
4秒前
lwq发布了新的文献求助10
4秒前
Grace完成签到,获得积分10
5秒前
华仔应助YaHaa采纳,获得10
6秒前
滕可燕发布了新的文献求助10
6秒前
爆米花应助陈甜甜采纳,获得10
7秒前
摆烂小鱼鱼完成签到 ,获得积分10
7秒前
Lucas应助韩麒嘉采纳,获得10
7秒前
7秒前
7秒前
8秒前
Niuniu完成签到,获得积分10
8秒前
裴裴驳回了珏晴应助
8秒前
9秒前
9秒前
9秒前
9秒前
Aprilapple完成签到,获得积分10
9秒前
10秒前
song发布了新的文献求助10
10秒前
兴奋的发卡完成签到 ,获得积分10
11秒前
自觉翠安应助qiuxiali123采纳,获得10
11秒前
13秒前
hezhuyou完成签到,获得积分20
13秒前
飞乐扣完成签到 ,获得积分10
13秒前
buno应助屈昭阳采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836