亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A YOLO-NL object detector for real-time detection

计算机科学 目标检测 稳健性(进化) 人工智能 推论 探测器 残余物 升级 对象(语法) 深度学习 计算机视觉 过程(计算) 比例(比率) 模式识别(心理学) 机器学习 算法 电信 生物化学 化学 物理 量子力学 基因 操作系统
作者
Yan Zhou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122256-122256 被引量:102
标识
DOI:10.1016/j.eswa.2023.122256
摘要

In recent years, YOLO object detection models have undergone significant advancement due to the success of novel deep convolutional networks. The success of these YOLO models is often attributed to their use of guidance techniques, such as expertly tailored deeper backbone and meticulously crafted detector head, which provides effective mechanisms to tradeoff between accuracy and efficiency. However, these sluggish-reasoning models are not capable of handling false detection and negative phenomena, facing challenges include improving the robustness of scaled objects detection against occlude and densely sophisticated scenarios. To address these limitations, we propose a novel object detector, You Only Look Once and None Left (YOLO-NL). Our model includes a novel global dynamic label assignment strategy, which allocates labels for specific anchors to maintain a balance between higher precision detection and finer localization. To enhance the detection capability of multi-scale objects in complex scenes, we separately upgrade CSPNet and PANet using the shortest-longest gradient strategy and self-attention mechanism. To meet the need for fast inference, we propose the Rep-CSPNet network using the reparameterization method to convert residual convolutions to ghost linear operations. Additionally, we accelerate the feature extraction process by deploying the serial SSPP structure. The proposed model is robust to scale objects against negative effectives such as dust, dense, ambiguous, and obstructed scenes. YOLO-NL achieved a mAP of 52.9% on the COCO 2017 test dataset, exhibiting a significant improvement of 2.64% compared to the baseline YOLOX. It is worth noting that YOLO-NL can perform high-accuracy and high-speed face mask detection in real-life scenarios. The YOLO-NL model was employed on self-built FMD and large open-source datasets, and the results show that it outperforms the other state-of-the-art methods, achieving 98.8% accuracy while maintaining 130 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈惜萱完成签到,获得积分20
刚刚
香蕉觅云应助metro采纳,获得10
2秒前
8秒前
8秒前
15秒前
ARESCI发布了新的文献求助10
20秒前
ARESCI完成签到,获得积分20
24秒前
36秒前
李爱国应助ARESCI采纳,获得10
38秒前
56秒前
59秒前
1分钟前
metro发布了新的文献求助10
1分钟前
圆滚滚的大肥猫完成签到,获得积分10
1分钟前
1分钟前
Ccccn完成签到,获得积分10
1分钟前
1分钟前
完美世界应助Hillson采纳,获得10
2分钟前
搜集达人应助PenguinC采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
PenguinC发布了新的文献求助10
3分钟前
3分钟前
3分钟前
秋刀鱼发布了新的文献求助10
3分钟前
酷炫小懒虫完成签到,获得积分0
3分钟前
加菲丰丰完成签到,获得积分0
3分钟前
充电宝应助Hoshino采纳,获得10
4分钟前
Yini应助FIN采纳,获得50
4分钟前
4分钟前
共享精神应助kevin采纳,获得30
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Hello应助长小右采纳,获得10
5分钟前
5分钟前
gtgyh发布了新的文献求助10
5分钟前
Yini应助FIN采纳,获得50
5分钟前
Yini应助bruna采纳,获得100
5分钟前
5分钟前
潮鸣完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554913
求助须知:如何正确求助?哪些是违规求助? 4639496
关于积分的说明 14656244
捐赠科研通 4581411
什么是DOI,文献DOI怎么找? 2512745
邀请新用户注册赠送积分活动 1487485
关于科研通互助平台的介绍 1458439