A YOLO-NL object detector for real-time detection

计算机科学 目标检测 稳健性(进化) 人工智能 推论 探测器 残余物 升级 对象(语法) 深度学习 计算机视觉 过程(计算) 比例(比率) 模式识别(心理学) 机器学习 算法 操作系统 物理 基因 化学 电信 量子力学 生物化学
作者
Yan Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122256-122256 被引量:39
标识
DOI:10.1016/j.eswa.2023.122256
摘要

In recent years, YOLO object detection models have undergone significant advancement due to the success of novel deep convolutional networks. The success of these YOLO models is often attributed to their use of guidance techniques, such as expertly tailored deeper backbone and meticulously crafted detector head, which provides effective mechanisms to tradeoff between accuracy and efficiency. However, these sluggish-reasoning models are not capable of handling false detection and negative phenomena, facing challenges include improving the robustness of scaled objects detection against occlude and densely sophisticated scenarios. To address these limitations, we propose a novel object detector, You Only Look Once and None Left (YOLO-NL). Our model includes a novel global dynamic label assignment strategy, which allocates labels for specific anchors to maintain a balance between higher precision detection and finer localization. To enhance the detection capability of multi-scale objects in complex scenes, we separately upgrade CSPNet and PANet using the shortest-longest gradient strategy and self-attention mechanism. To meet the need for fast inference, we propose the Rep-CSPNet network using the reparameterization method to convert residual convolutions to ghost linear operations. Additionally, we accelerate the feature extraction process by deploying the serial SSPP structure. The proposed model is robust to scale objects against negative effectives such as dust, dense, ambiguous, and obstructed scenes. YOLO-NL achieved a mAP of 52.9% on the COCO 2017 test dataset, exhibiting a significant improvement of 2.64% compared to the baseline YOLOX. It is worth noting that YOLO-NL can perform high-accuracy and high-speed face mask detection in real-life scenarios. The YOLO-NL model was employed on self-built FMD and large open-source datasets, and the results show that it outperforms the other state-of-the-art methods, achieving 98.8% accuracy while maintaining 130 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助Obliviate采纳,获得10
刚刚
刚刚
小徐801发布了新的文献求助50
刚刚
刚刚
贪玩的晓筠完成签到,获得积分10
1秒前
2秒前
任性的卿完成签到,获得积分10
2秒前
shanage应助止戈采纳,获得10
3秒前
3秒前
小七完成签到 ,获得积分10
3秒前
Domanic完成签到,获得积分10
4秒前
完美世界应助光亮的忆山采纳,获得20
4秒前
4秒前
元昭诩应助张子珍采纳,获得10
4秒前
niantang完成签到,获得积分20
5秒前
5秒前
共享精神应助善良的宛凝采纳,获得30
5秒前
苹果衬衫发布了新的文献求助10
6秒前
6秒前
宋宋发布了新的文献求助10
7秒前
7秒前
zz完成签到,获得积分10
7秒前
炙热笑旋发布了新的文献求助10
7秒前
7秒前
科研通AI5应助小皮采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
李健的粉丝团团长应助dou采纳,获得10
8秒前
Wiggins完成签到,获得积分10
8秒前
8秒前
9秒前
ly完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
常尽欢发布了新的文献求助10
11秒前
热心之槐发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652814
求助须知:如何正确求助?哪些是违规求助? 3216895
关于积分的说明 9714455
捐赠科研通 2924654
什么是DOI,文献DOI怎么找? 1601797
邀请新用户注册赠送积分活动 754601
科研通“疑难数据库(出版商)”最低求助积分说明 733157