A YOLO-NL object detector for real-time detection

计算机科学 目标检测 稳健性(进化) 人工智能 推论 探测器 残余物 升级 对象(语法) 深度学习 计算机视觉 过程(计算) 比例(比率) 模式识别(心理学) 机器学习 算法 操作系统 物理 基因 化学 电信 量子力学 生物化学
作者
Yan Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122256-122256 被引量:49
标识
DOI:10.1016/j.eswa.2023.122256
摘要

In recent years, YOLO object detection models have undergone significant advancement due to the success of novel deep convolutional networks. The success of these YOLO models is often attributed to their use of guidance techniques, such as expertly tailored deeper backbone and meticulously crafted detector head, which provides effective mechanisms to tradeoff between accuracy and efficiency. However, these sluggish-reasoning models are not capable of handling false detection and negative phenomena, facing challenges include improving the robustness of scaled objects detection against occlude and densely sophisticated scenarios. To address these limitations, we propose a novel object detector, You Only Look Once and None Left (YOLO-NL). Our model includes a novel global dynamic label assignment strategy, which allocates labels for specific anchors to maintain a balance between higher precision detection and finer localization. To enhance the detection capability of multi-scale objects in complex scenes, we separately upgrade CSPNet and PANet using the shortest-longest gradient strategy and self-attention mechanism. To meet the need for fast inference, we propose the Rep-CSPNet network using the reparameterization method to convert residual convolutions to ghost linear operations. Additionally, we accelerate the feature extraction process by deploying the serial SSPP structure. The proposed model is robust to scale objects against negative effectives such as dust, dense, ambiguous, and obstructed scenes. YOLO-NL achieved a mAP of 52.9% on the COCO 2017 test dataset, exhibiting a significant improvement of 2.64% compared to the baseline YOLOX. It is worth noting that YOLO-NL can perform high-accuracy and high-speed face mask detection in real-life scenarios. The YOLO-NL model was employed on self-built FMD and large open-source datasets, and the results show that it outperforms the other state-of-the-art methods, achieving 98.8% accuracy while maintaining 130 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助明理的青寒采纳,获得10
1秒前
潇洒的擎苍完成签到 ,获得积分10
1秒前
CodeCraft应助赵佳璐采纳,获得10
2秒前
2秒前
陶醉晓凡发布了新的文献求助10
3秒前
Dada完成签到,获得积分10
3秒前
McQ发布了新的文献求助10
3秒前
我是老大应助tonight采纳,获得10
4秒前
负责月光完成签到,获得积分10
5秒前
千空发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
Mine发布了新的文献求助10
8秒前
WL发布了新的文献求助10
8秒前
9秒前
米九完成签到,获得积分10
9秒前
11秒前
11秒前
12秒前
12秒前
充电宝应助linmo采纳,获得10
12秒前
12秒前
12秒前
abcc1234发布了新的文献求助10
13秒前
13秒前
Kenzonvay发布了新的文献求助10
15秒前
许宗蓥完成签到,获得积分10
15秒前
chengzi发布了新的文献求助10
15秒前
HOXXXiii完成签到,获得积分10
15秒前
tonight发布了新的文献求助10
15秒前
Jenaloe发布了新的文献求助10
16秒前
赵佳璐发布了新的文献求助10
16秒前
SciGPT应助ihtw采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
21秒前
FashionBoy应助ln采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089