A YOLO-NL object detector for real-time detection

计算机科学 目标检测 稳健性(进化) 人工智能 推论 探测器 残余物 升级 对象(语法) 深度学习 计算机视觉 过程(计算) 比例(比率) 模式识别(心理学) 机器学习 算法 电信 生物化学 化学 物理 量子力学 基因 操作系统
作者
Yan Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122256-122256 被引量:72
标识
DOI:10.1016/j.eswa.2023.122256
摘要

In recent years, YOLO object detection models have undergone significant advancement due to the success of novel deep convolutional networks. The success of these YOLO models is often attributed to their use of guidance techniques, such as expertly tailored deeper backbone and meticulously crafted detector head, which provides effective mechanisms to tradeoff between accuracy and efficiency. However, these sluggish-reasoning models are not capable of handling false detection and negative phenomena, facing challenges include improving the robustness of scaled objects detection against occlude and densely sophisticated scenarios. To address these limitations, we propose a novel object detector, You Only Look Once and None Left (YOLO-NL). Our model includes a novel global dynamic label assignment strategy, which allocates labels for specific anchors to maintain a balance between higher precision detection and finer localization. To enhance the detection capability of multi-scale objects in complex scenes, we separately upgrade CSPNet and PANet using the shortest-longest gradient strategy and self-attention mechanism. To meet the need for fast inference, we propose the Rep-CSPNet network using the reparameterization method to convert residual convolutions to ghost linear operations. Additionally, we accelerate the feature extraction process by deploying the serial SSPP structure. The proposed model is robust to scale objects against negative effectives such as dust, dense, ambiguous, and obstructed scenes. YOLO-NL achieved a mAP of 52.9% on the COCO 2017 test dataset, exhibiting a significant improvement of 2.64% compared to the baseline YOLOX. It is worth noting that YOLO-NL can perform high-accuracy and high-speed face mask detection in real-life scenarios. The YOLO-NL model was employed on self-built FMD and large open-source datasets, and the results show that it outperforms the other state-of-the-art methods, achieving 98.8% accuracy while maintaining 130 FPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li完成签到,获得积分10
1秒前
Miranda完成签到,获得积分10
3秒前
叫我富婆儿完成签到,获得积分10
3秒前
科研通AI6应助meng采纳,获得10
3秒前
流白完成签到,获得积分10
4秒前
yunjian1583完成签到,获得积分10
4秒前
Leo000007完成签到,获得积分10
4秒前
kuikui1100完成签到,获得积分10
4秒前
4秒前
6秒前
yz完成签到,获得积分10
6秒前
xiaoxiao完成签到,获得积分10
6秒前
hongdongxiang完成签到,获得积分10
6秒前
6秒前
温暖的天与完成签到 ,获得积分10
6秒前
sx完成签到,获得积分10
6秒前
Li发布了新的文献求助10
6秒前
ljj完成签到,获得积分10
6秒前
7秒前
8秒前
Once完成签到 ,获得积分10
8秒前
格兰德法泽尔完成签到,获得积分10
8秒前
Selonfer完成签到,获得积分10
8秒前
轩辕完成签到,获得积分10
9秒前
氧硫硒锑铋完成签到,获得积分10
10秒前
Diss完成签到,获得积分10
10秒前
ppxdd完成签到,获得积分10
10秒前
RSC完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
dtcao发布了新的文献求助10
11秒前
kongzhiqiqi完成签到,获得积分10
11秒前
逆游的鱼完成签到,获得积分10
12秒前
牟潦草发布了新的文献求助10
12秒前
红箭烟雨发布了新的文献求助10
12秒前
13秒前
伏城发布了新的文献求助10
13秒前
a'mao'men完成签到,获得积分10
13秒前
wsafhgfjb完成签到,获得积分10
14秒前
轩辕发布了新的文献求助10
14秒前
杨无敌完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927230
求助须知:如何正确求助?哪些是违规求助? 4196614
关于积分的说明 13033700
捐赠科研通 3969366
什么是DOI,文献DOI怎么找? 2175324
邀请新用户注册赠送积分活动 1192409
关于科研通互助平台的介绍 1103081