亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microscopic image recognition of diatoms based on deep learning

硅藻 分割 预处理器 生物 人工智能 计算机科学 生物多样性 模式识别(心理学) 机器学习 生态学
作者
S.-Z. Pu,Fan Zhang,Yuexuan Shu,Weiqi Fu
出处
期刊:Journal of Phycology [Wiley]
卷期号:59 (6): 1166-1178 被引量:3
标识
DOI:10.1111/jpy.13390
摘要

Abstract Diatoms are a crucial component in the study of aquatic ecosystems and ancient environmental records. However, traditional methods for identifying diatoms, such as morphological taxonomy and molecular detection, are costly, are time consuming, and have limitations. To address these issues, we developed an extensive collection of diatom images, consisting of 7983 images from 160 genera and 1042 species, which we expanded to 49,843 through preprocessing, segmentation, and data augmentation. Our study compared the performance of different algorithms, including backbones, batch sizes, dynamic data augmentation, and static data augmentation on experimental results. We determined that the ResNet152 network outperformed other networks, producing the most accurate results with top‐1 and top‐5 accuracies of 85.97% and 95.26%, respectively, in identifying 1042 diatom species. Additionally, we propose a method that combines model prediction and cosine similarity to enhance the model's performance in low‐probability predictions, achieving an 86.07% accuracy rate in diatom identification. Our research contributes significantly to the recognition and classification of diatom images and has potential applications in water quality assessment, ecological monitoring, and detecting changes in aquatic biodiversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
34完成签到 ,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
Swear完成签到 ,获得积分10
37秒前
NPC关闭了NPC文献求助
1分钟前
1分钟前
1分钟前
2分钟前
Echo完成签到,获得积分10
2分钟前
2分钟前
和平使命应助chaxie采纳,获得10
2分钟前
2分钟前
chaxie完成签到,获得积分10
2分钟前
CodeCraft应助李子潭采纳,获得10
2分钟前
孙老师完成签到 ,获得积分10
3分钟前
3分钟前
天天快乐应助axiao采纳,获得10
3分钟前
早晚完成签到 ,获得积分10
3分钟前
3分钟前
axiao发布了新的文献求助10
3分钟前
李子潭发布了新的文献求助40
3分钟前
3分钟前
4分钟前
linyingo发布了新的文献求助10
4分钟前
4分钟前
李子潭发布了新的文献求助10
4分钟前
linyingo完成签到,获得积分10
4分钟前
大个应助菜鸟写论文采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
热情依白应助科研通管家采纳,获得10
4分钟前
MROU完成签到,获得积分10
4分钟前
Jj发布了新的文献求助10
4分钟前
physicalproblem完成签到,获得积分10
5分钟前
5分钟前
5分钟前
张杰列夫完成签到 ,获得积分10
5分钟前
科研通AI2S应助hahaha123采纳,获得10
5分钟前
传奇3应助hahaha123采纳,获得10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307395
求助须知:如何正确求助?哪些是违规求助? 2941022
关于积分的说明 8500219
捐赠科研通 2615423
什么是DOI,文献DOI怎么找? 1428873
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461