清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CatNet: Sequence-based deep learning with cross-attention mechanism for identifying endocrine-disrupting chemicals

一般化 机制(生物学) 计算机科学 机器学习 特征(语言学) 透视图(图形) 人类健康 接口(物质) 可视化 人工智能 集合(抽象数据类型) 计算生物学 生化工程 工程类 生物 医学 数学分析 哲学 语言学 数学 环境卫生 认识论 气泡 最大气泡压力法 并行计算 程序设计语言
作者
Lu Zhao,Qiao Xue,Huazhou Zhang,Yuxing Hao,Hang Yi,Xian Liu,Wenxiao Pan,Jianjie Fu,Aiqian Zhang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:465: 133055-133055 被引量:3
标识
DOI:10.1016/j.jhazmat.2023.133055
摘要

Endocrine-disrupting chemicals (EDCs) pose significant environmental and health risks due to their potential to interfere with nuclear receptors (NRs), key regulators of physiological processes. Despite the evident risks, the majority of existing research narrows its focus on the interaction between compounds and the individual NR target, neglecting a comprehensive assessment across the entire NR family. In response, this study assembled a comprehensive human NR dataset, capturing 49,244 interactions between 35,467 unique compounds and 42 NRs. We introduced a cross-attention network framework, "CatNet", innovatively integrating compound and protein representations through cross-attention mechanisms. The results showed that CatNet model achieved excellent performance with an area under the receiver operating characteristic curve (AUCROC) = 0.916 on the test set, and exhibited reliable generalization on unseen compound-NR pairs. A distinguishing feature of our research is its capacity to expand to novel targets. Beyond its predictive accuracy, CatNet offers a valuable mechanistic perspective on compound-NR interactions through feature visualization. Augmenting the utility of our research, we have also developed a graphical user interface, empowering researchers to predict chemical binding to diverse NRs. Our model enables the prediction of human NR-related EDCs and shows the potential to identify EDCs related to other targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
kmzzy完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
hsj完成签到,获得积分10
1分钟前
秦明完成签到 ,获得积分10
1分钟前
VDC关闭了VDC文献求助
1分钟前
简单的含巧完成签到,获得积分20
1分钟前
想上985完成签到,获得积分10
1分钟前
浮游应助科研通管家采纳,获得10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
VDC发布了新的文献求助10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
2分钟前
2分钟前
艾希德露发布了新的文献求助10
2分钟前
Lucas应助yy采纳,获得10
2分钟前
2分钟前
酷波er应助VDC采纳,获得10
2分钟前
onestep完成签到,获得积分10
3分钟前
tt完成签到,获得积分10
3分钟前
3分钟前
VDC发布了新的文献求助10
3分钟前
3分钟前
electricelectric完成签到,获得积分0
4分钟前
Huzhu应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498422
求助须知:如何正确求助?哪些是违规求助? 4595652
关于积分的说明 14449590
捐赠科研通 4528514
什么是DOI,文献DOI怎么找? 2481546
邀请新用户注册赠送积分活动 1465666
关于科研通互助平台的介绍 1438429