基因沉默
癌症研究
细胞生长
细胞凋亡
生物
流式细胞术
细胞
转录因子
活力测定
分子生物学
化学
基因
生物化学
标识
DOI:10.1080/08820139.2023.2244976
摘要
Perilipin 3 (PLIN3), a lipid droplet-associated protein, is found to be highly expressed in human cancers. This study aimed to investigate the biological functions and underlying mechanism of PLIN3 in lung adenocarcinoma (LUAD).To analyse PLIN3 expression in normal and cancerous tissues, relevance between PLIN3 expression and survival prognosis, and to predict the pathways related to PLIN3, bioinformatic analysis was performed. In A549 and H1299 cells, qRT-PCR or western blotting was used to determine mRNA/protein expression of PLIN3, PD-L1, and c-Myc. In A549 and H1299 cells, CCK-8 assay, EdU, and flow cytometry were used to assess cell viability, proliferation, and apoptosis. Chip and luciferase reporter assays were performed to verify the binding of PD-L1 with c-Myc. The functions of PLIN3 were examined in vivo in a xenograft tumor model.In LUAD tissues and cells, PLIN3 expression was downregulated. A shorter survival time was observed in patients with high PLIN3 expression than in patients with low PLIN3 expression. Silencing of PLIN3 inhibited cell proliferation, PD-L1 expression, and Myc pathway, as well as induced apoptosis in LUAD cells. c-Myc acts as a transcription factor of PD-L1. Moreover, the inhibitory actions of PLIN3 silencing on c-Myc and PD-L1 expression as well as cell proliferation and stimulatory action of PLIN3 silencing on cell apoptosis were reversed by c-Myc overexpression. In vivo, PLIN3 silencing inhibited the growth of xenograft tumour and reduced PLIN3, PD-L1, and c-Myc protein expression.Silencing of PLIN3 inhibited tumour growth by regulating the Myc/PD-L1 pathway.1. Silencing of PLIN3 inhibited tumour growth in vivo and in vitro.2. Silencing of PLIN3 inhibited PD-L1 expression and Myc pathway in LUAD cells.3. c-Myc acted as a transcription factor of PD-L1.4. Silencing of PLIN3 exerted anti-tumour effects by regulating c-Myc/PD-L1.
科研通智能强力驱动
Strongly Powered by AbleSci AI