A multitask deep learning radiomics model for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion chemotherapy

医学 肝细胞癌 无线电技术 内科学 化疗 肿瘤科 放射科
作者
Xuelei He,Kai Li,Ran Wei,Mengxuan Zuo,Wang Yao,Zechen Zheng,Xiaowei He,Yan Fu,Chengzhi Li,Chao An,Wendao Liu
出处
期刊:Radiologia Medica [Springer Nature]
卷期号:128 (12): 1508-1520 被引量:17
标识
DOI:10.1007/s11547-023-01719-1
摘要

Abstract Background The macrotrabecular-massive (MTM) is a special subtype of hepatocellular carcinoma (HCC), which has commonly a dismal prognosis. This study aimed to develop a multitask deep learning radiomics (MDLR) model for predicting MTM and HCC patients’ prognosis after hepatic arterial infusion chemotherapy (HAIC). Methods From June 2018 to March 2020, 158 eligible patients with HCC who underwent surgery were retrospectively enrolled in MTM related cohorts, and 752 HCC patients who underwent HAIC were included in HAIC related cohorts during the same period. DLR features were extracted from dual-phase (arterial phase and venous phase) contrast-enhanced computed tomography (CECT) of the entire liver region. Then, an MDLR model was used for the simultaneous prediction of the MTM subtype and patient prognosis after HAIC. The MDLR model for prognostic risk stratification incorporated DLR signatures, clinical variables and MTM subtype. Findings The predictive performance of the DLR model for the MTM subtype was 0.968 in the training cohort [TC], 0.912 in the internal test cohort [ITC] and 0.773 in the external test cohort [ETC], respectively. Multivariable analysis identified portal vein tumor thrombus (PVTT) ( p = 0.012), HAIC response ( p < 0.001), HAIC sessions ( p < 0.001) and MTM subtype ( p < 0.001) as indicators of poor prognosis. After incorporating DLR signatures, the MDLR model yielded the best performance among all models (AUC, 0.855 in the TC, 0.805 in the ITC and 0.792 in the ETC). With these variables, the MDLR model provided two risk strata for overall survival (OS) in the TC: low risk (5-year OS, 44.9%) and high risk (5-year OS, 4.9%). Interpretation A tool based on MDLR was developed to consider that the MTM is an important prognosis factor for HCC patients. MDLR showed outstanding performance for the prognostic risk stratification of HCC patients who underwent HAIC and may help physicians with therapeutic decision making and surveillance strategy selection in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助渔泽采纳,获得10
刚刚
刚刚
Ava应助Jasoncheng采纳,获得10
刚刚
合适忆枫完成签到 ,获得积分10
1秒前
我想当太空人完成签到,获得积分10
2秒前
2秒前
TYG发布了新的文献求助10
4秒前
4秒前
y943发布了新的文献求助10
5秒前
寒冷又菡发布了新的文献求助10
5秒前
jay发布了新的文献求助10
6秒前
7秒前
科研通AI6应助阿伟喵喵喵采纳,获得10
7秒前
wanci应助迫切采纳,获得10
8秒前
11秒前
yezi完成签到,获得积分10
11秒前
qjq琪发布了新的文献求助10
12秒前
渔泽完成签到,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
炖蛋完成签到,获得积分10
14秒前
15秒前
15秒前
冷静夜蕾完成签到,获得积分10
16秒前
风语过完成签到,获得积分10
16秒前
吴未发布了新的文献求助10
17秒前
航迹云完成签到,获得积分10
18秒前
18秒前
TYG完成签到,获得积分10
19秒前
体贴菠萝发布了新的文献求助10
19秒前
y943完成签到,获得积分10
19秒前
19秒前
酷波er应助绿豆汤采纳,获得10
19秒前
20秒前
Return发布了新的文献求助10
20秒前
敏感菲鹰发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649626
求助须知:如何正确求助?哪些是违规求助? 4778871
关于积分的说明 15049592
捐赠科研通 4808672
什么是DOI,文献DOI怎么找? 2571696
邀请新用户注册赠送积分活动 1528088
关于科研通互助平台的介绍 1486851