Rapid identification of traditional Chinese medicines (Lonicerae japonicae flos and Lonicerae flos) and their origins using excitation-emission matrix fluorescence spectroscopy coupled with chemometrics

弗洛斯 化学计量学 主成分分析 线性判别分析 模式识别(心理学) 人工智能 计算机科学 化学 机器学习 生物化学 芦丁 抗氧化剂
作者
Song He,Wanjun Long,Chengying Hai,Hengye Chen,Chuanjie Tang,Ximeng Rong,Jian Yang,Haiyan Fu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:307: 123639-123639 被引量:8
标识
DOI:10.1016/j.saa.2023.123639
摘要

Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are important traditional Chinese medicine with various effects and prescription compatibility. The accurate identification of LJF and LF and their geographical origin are of great significance to the quality control and correct medication. In this work, a simple, rapid and efficient strategy for identification of Lonicerae japonicae flos and Lonicerae flos and their geographical origin was proposed by combining excitation-emission matrix fluorescence (EEMF) and chemometrics. Excitation-emission matrix fluorescence (EEMF) spectra of LJF and LF samples were characterized by parallel factor analysis (PARAFAC) to acquire chemically meaningful information. Classification models were built using three chemometric methods, including partial least squares-discrimination analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF). These models were utilized to identify LJF and LF and their geographical origin. Results revealed that PCA-LDA model gained the optimal performance with 100% classification accuracy for distinguishing between LJF and LJF from different geographical origin. Therefore, the proposed strategy could be a competitive alternative for fast and accurate differentiation of LJF and LF and their geographical origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐新新完成签到,获得积分20
1秒前
热心晓丝发布了新的文献求助10
2秒前
3秒前
汉堡包应助zzzzzz采纳,获得10
3秒前
4秒前
4秒前
唐新新发布了新的文献求助10
4秒前
sunny850完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
Antheali应助科研通管家采纳,获得10
7秒前
唐泽雪穗应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
9秒前
sunny850发布了新的文献求助10
9秒前
10秒前
10秒前
坚定芷烟完成签到,获得积分10
11秒前
飞飞猪完成签到,获得积分20
12秒前
kkz完成签到,获得积分10
12秒前
12秒前
拉圈最菜妮厨完成签到,获得积分10
13秒前
13秒前
杨丹完成签到 ,获得积分20
14秒前
14秒前
15秒前
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
somebodyzou发布了新的文献求助30
17秒前
kkz发布了新的文献求助10
17秒前
吴世勋fans发布了新的文献求助30
18秒前
蛋蛋完成签到 ,获得积分10
19秒前
陈秋红发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991289
求助须知:如何正确求助?哪些是违规求助? 4239820
关于积分的说明 13208366
捐赠科研通 4034700
什么是DOI,文献DOI怎么找? 2207462
邀请新用户注册赠送积分活动 1218448
关于科研通互助平台的介绍 1136900