Rapid identification of traditional Chinese medicines (Lonicerae japonicae flos and Lonicerae flos) and their origins using excitation-emission matrix fluorescence spectroscopy coupled with chemometrics

弗洛斯 化学计量学 主成分分析 线性判别分析 模式识别(心理学) 人工智能 计算机科学 化学 机器学习 生物化学 芦丁 抗氧化剂
作者
Song He,Wanjun Long,Chengying Hai,Hengye Chen,Chuanjie Tang,Ximeng Rong,Jian Yang,Haiyan Fu
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:307: 123639-123639 被引量:6
标识
DOI:10.1016/j.saa.2023.123639
摘要

Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) are important traditional Chinese medicine with various effects and prescription compatibility. The accurate identification of LJF and LF and their geographical origin are of great significance to the quality control and correct medication. In this work, a simple, rapid and efficient strategy for identification of Lonicerae japonicae flos and Lonicerae flos and their geographical origin was proposed by combining excitation-emission matrix fluorescence (EEMF) and chemometrics. Excitation-emission matrix fluorescence (EEMF) spectra of LJF and LF samples were characterized by parallel factor analysis (PARAFAC) to acquire chemically meaningful information. Classification models were built using three chemometric methods, including partial least squares-discrimination analysis (PLS-DA), principal component analysis-linear discriminant analysis (PCA-LDA) and random forest (RF). These models were utilized to identify LJF and LF and their geographical origin. Results revealed that PCA-LDA model gained the optimal performance with 100% classification accuracy for distinguishing between LJF and LJF from different geographical origin. Therefore, the proposed strategy could be a competitive alternative for fast and accurate differentiation of LJF and LF and their geographical origin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水菜泽子发布了新的文献求助10
1秒前
2秒前
当时明月在完成签到,获得积分0
2秒前
2秒前
小二郎应助半凡采纳,获得10
4秒前
4秒前
7秒前
周末万岁完成签到,获得积分10
10秒前
Chang发布了新的文献求助10
10秒前
roser完成签到 ,获得积分10
12秒前
欢喜白亦完成签到 ,获得积分10
13秒前
Chang完成签到,获得积分10
17秒前
善学以致用应助th采纳,获得10
19秒前
鸣笛应助肖宇婕采纳,获得30
19秒前
fls221完成签到,获得积分10
20秒前
刀切面完成签到 ,获得积分10
21秒前
Lost发布了新的文献求助10
24秒前
欢喜白亦关注了科研通微信公众号
24秒前
桐桐应助kento采纳,获得10
24秒前
26秒前
等于几都行完成签到 ,获得积分10
26秒前
26秒前
lihang发布了新的文献求助10
29秒前
潇潇麻麻完成签到,获得积分10
29秒前
相对完成签到,获得积分10
30秒前
31秒前
JamesPei应助棋士采纳,获得10
31秒前
星辰大海应助chr采纳,获得10
32秒前
33秒前
丘比特应助高挑的梦芝采纳,获得10
33秒前
起飞上天完成签到,获得积分10
34秒前
李爱国应助Lost采纳,获得10
36秒前
lihang完成签到,获得积分10
38秒前
Re完成签到,获得积分10
39秒前
xxxx发布了新的文献求助10
40秒前
40秒前
40秒前
郭睿发布了新的文献求助10
42秒前
42秒前
刻苦冬菱完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030