阴极
材料科学
硼
兴奋剂
离子
电化学
电压
格子(音乐)
化学物理
表面工程
化学工程
纳米技术
电极
光电子学
化学
物理化学
电气工程
物理
有机化学
声学
工程类
作者
Fangkun Li,Zhengbo Liu,Caijian Liao,Xijun Xu,Min Zhu,Jun Liu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2023-10-27
卷期号:8 (11): 4903-4914
被引量:27
标识
DOI:10.1021/acsenergylett.3c02072
摘要
The utilization of high-voltage Ni-rich cathodes can cost-effectively push lithium-ion batteries toward higher energy density but suffers from major challenges with severe structural and interfacial degradation and compromised thermal robustness. Herein, a multifunctional modification strategy (i.e., gradient engineering and surface lattice modulation) is rationally devised to establish a chemomechanically reliable single-crystal boracic polyanion-doped LiNi0.6Co0.2Mn0.2O2 (B-NCM) cathode that operates stably under high voltage (≥4.5 V vs Li/Li+). It is found that introduction of a boron-based polyanion into Ni-rich cathodes could form a boron–polyanion gradient-doped structure and disordered layer phase on the surface of NCM particles, further inhibiting parasitic reactions and irreversible phase transition. As a result, the B-NCM cells demonstrate capacity retention of 88.5% after 200 cycles at 4.5 V and stable operation at 60 °C. The current strategy employing gradient engineering and a surface disorder phase affords an effective and facile approach to boost the development of high-voltage Ni-rich cathodes and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI