已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prior Knowledge-Guided Transformer for Remote Sensing Image Captioning

隐藏字幕 计算机科学 变压器 特征提取 人工智能 计算机视觉 特征(语言学) 遥感 图像(数学) 语言学 量子力学 物理 地质学 哲学 电压
作者
Lingwu Meng,Jing Wang,Yang Yang,Liang Xiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:1
标识
DOI:10.1109/tgrs.2023.3328181
摘要

Remote sensing image captioning aims to generate meaningful and grammatically accurate sentences for remote sensing images. However, in comparison to natural image captioning, remote sensing image captioning encounters additional challenges due to the unique characteristics of remote sensing images. The first challenge arises from the abundance of objects present in these images. As the number of objects increases, it becomes increasingly difficult to determine the main focus of the description. Moreover, the objects in remote sensing images often share similar appearances, which further complicates the generation of accurate descriptions. To overcome these challenges, we propose a Prior Knowledge-guided Transformer for remote sensing image captioning. Firstly, scene-level and object-level features are extracted in a Multi-level Feature Extraction module. To further refine and enhance the extracted multi-level features, we introduce a Feature Enhancement module. This module utilizes a combination of graph neural networks and attention mechanisms to capture the correlation and difference between different objects or scene regions. Moreover, we propose a Prior Knowledge augmented Attention mechanism to select the objects that are more relevant to the scene regions by establishing the relationships between them. This attention mechanism is seamlessly integrated into the Transformer structure, providing valuable prior knowledge that promotes the caption generation process. Extensive experiments on three remote sensing image captioning datasets verify the superiority of the proposed method. Compared with the baseline methods, the proposed method achieves more impressive performance. The code will be publicly available at https://github.com/One-paper-luck/PKG-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关关完成签到 ,获得积分10
1秒前
fhbsdufh完成签到,获得积分10
1秒前
大龙哥886发布了新的文献求助10
1秒前
赘婿应助Y哦莫哦莫采纳,获得10
2秒前
浅尝离白应助mhztc采纳,获得30
3秒前
4秒前
4秒前
4秒前
切奇莉亚发布了新的文献求助10
7秒前
陈展峰完成签到,获得积分10
11秒前
上官若男应助打地鼠工人采纳,获得10
13秒前
卷卷完成签到 ,获得积分10
15秒前
天天快乐应助陈展峰采纳,获得10
16秒前
冰糖葫芦娃完成签到 ,获得积分10
17秒前
xy完成签到,获得积分10
17秒前
rrrrrrry发布了新的文献求助10
18秒前
iuhgnor发布了新的文献求助10
19秒前
奶茶完成签到 ,获得积分10
19秒前
ys6完成签到,获得积分10
20秒前
20秒前
香蕉觅云应助拣寒栖冷采纳,获得10
20秒前
21秒前
23秒前
苏晓醒完成签到,获得积分10
25秒前
宁大大完成签到 ,获得积分10
26秒前
27秒前
英姑应助切奇莉亚采纳,获得10
28秒前
28秒前
泯然完成签到,获得积分10
29秒前
Diss发布了新的文献求助10
30秒前
热心市民王先生完成签到,获得积分20
30秒前
严十三完成签到 ,获得积分10
30秒前
yaliswun发布了新的文献求助10
31秒前
34秒前
周七七发布了新的文献求助10
34秒前
leclerc发布了新的文献求助10
36秒前
可乐不加冰完成签到 ,获得积分10
36秒前
青寻完成签到,获得积分10
39秒前
wang完成签到,获得积分10
40秒前
烟花应助Raul采纳,获得10
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136781
求助须知:如何正确求助?哪些是违规求助? 2787825
关于积分的说明 7783217
捐赠科研通 2443872
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954