APGVAE: Adaptive disentangled representation learning with the graph-based structure information

可解释性 自编码 计算机科学 特征学习 人工智能 特征(语言学) 人工神经网络 深度学习 图形 先验概率 代表(政治) 机器学习 一致性(知识库) 模式识别(心理学) 理论计算机科学 贝叶斯概率 政治学 法学 哲学 语言学 政治
作者
Qiao Ke,Xinhui Jing,Marcin Woźniak,Shuang Xu,Yunji Liang,Jiangbin Zheng
出处
期刊:Information Sciences [Elsevier]
卷期号:657: 119903-119903 被引量:38
标识
DOI:10.1016/j.ins.2023.119903
摘要

Neural networks are used to learn task-oriented high-level representations in an end-to-end manner by building a multi-layer neural network. Generation models have developed rapidly with the emergence of deep neural networks. But it still has problems with the insufficient authenticity of generated images, the deficiency of diversity, consistency, and unexplainability in the generation process. Disentangled representation is an effective method to learn a high-level feature representation and realize the interpretability of deep neural networks. We propose a general disentangled representation learning network with variational autoencoder network as the basic framework for the image generation process. The graph-based structure of the priors is embedded in the last module of the deep encoder network to build the feature spaces by the class, task-oriented, and task-unrelated information respectively. Meanwhile the priors should be adaptively modified with the task relevance of a generated image. And the semi-supervised learning is further involved in the disentangled representation network framework to reduce the requirements of label and extend the majority of feature space under the task-unrelated feature assumption. Experimental results show that the proposed method is efficient for various types of images and has a good potential for further research and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
袁琴发布了新的文献求助10
1秒前
2秒前
一瓶罐发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
开心樱发布了新的文献求助10
5秒前
ali完成签到 ,获得积分10
5秒前
6秒前
哆啦B梦发布了新的文献求助10
7秒前
SX发布了新的文献求助10
7秒前
香蕉觅云应助大壮采纳,获得10
9秒前
卢琨发布了新的文献求助10
9秒前
杜不腾完成签到,获得积分10
9秒前
Judy发布了新的文献求助10
9秒前
蒲杨发布了新的文献求助10
10秒前
完美世界应助梅天豪采纳,获得10
10秒前
耍酷的薯片完成签到,获得积分10
11秒前
11秒前
着急的傲菡完成签到,获得积分10
11秒前
FLZLC应助枕安采纳,获得20
11秒前
11秒前
12秒前
Rita应助LAIII采纳,获得10
12秒前
阿晨完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
Akim应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
rowanxiao完成签到,获得积分10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
Yang应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得30
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618