Machine learning algorithms for real-time coal recognition using monitor-while-drilling data

演习 煤矿开采 钻探 采矿工程 测井 人工神经网络 人工智能 地质学 机器学习 计算机科学 石油工程 工程类 机械工程 废物管理
作者
Gilles Eric Zagré,Michel Gamache,Richard Labib,Viktor Shlenchak
出处
期刊:International Journal of Mining, Reclamation and Environment [Informa]
卷期号:: 1-26
标识
DOI:10.1080/17480930.2023.2243783
摘要

ABSTRACTAccurate coal seam identification is crucial in coal mining to prevent resource wastage and potential damage to coal seams from misplaced explosives. The current industry standard involves drilling past the seam and refilling the hole, a resource-intensive process. Manual seam detection is error-prone, and geophysical logging, performed for only a subset of drill holes, is costly and time-consuming. Monitor-While-Drilling (MWD) data captures drill response metrics like rotary speed and torque, influenced by local geology. These MWD measurements offer insights into geology, including hardness and rock type; They can be used for real-time rock recognition using advanced artificial intelligence techniques. This study focuses on developing tools for precise coal recognition and identification of the top of coal seams using MWD data. Several Machine Learning classifiers are employed, each providing unique data interpretations, and their results are integrated into a more reliable prediction. An artificial neural network is used for rock density regression, which is then used to correct depth offset between geophysical loggings and drill MWD data. The research demonstrates that MWD data can enable real-time coal seam identification, reducing the reliance on time-consuming and expensive geophysical logging. The integrated model accurately identifies the top of coal seams within a ± 20 cm margin.KEYWORDS: Artificial neural networkrock recognitionrock classificationmeasurement-while-drillingmachine learningensemble learning AcknowledgmentsThis project was also supported by the NSERC CRD program: RDCPJ53815-18.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work has been supported and partly funded by Peck Tech Consulting Ltd through the MITACS Accelerate program. The authors are grateful to the Peck Tech Consulting team and management for their valuable input and for providing the supporting data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
不配.应助科研通管家采纳,获得10
1秒前
1秒前
不配.应助科研通管家采纳,获得10
1秒前
tachikoma应助科研通管家采纳,获得10
2秒前
2秒前
SS完成签到,获得积分20
2秒前
行僧完成签到 ,获得积分10
3秒前
点凌蝶完成签到,获得积分10
3秒前
英俊的铭应助彭医生采纳,获得10
4秒前
无花果应助张清采纳,获得10
5秒前
李爱国应助舒心的雨双采纳,获得10
6秒前
小小研究僧。完成签到,获得积分10
7秒前
明亮枫发布了新的文献求助10
8秒前
9秒前
顾矜应助我来也采纳,获得10
10秒前
11秒前
11秒前
SXYYXS发布了新的文献求助10
11秒前
12秒前
科研通AI2S应助小小廖采纳,获得10
12秒前
彭医生发布了新的文献求助10
13秒前
15秒前
15秒前
16秒前
majiko发布了新的文献求助10
16秒前
kkkkkkk_发布了新的文献求助10
17秒前
雪白的猫咪完成签到,获得积分20
18秒前
文献蚂蚁发布了新的文献求助10
18秒前
CipherSage应助YY采纳,获得10
19秒前
五月拾旧发布了新的文献求助10
19秒前
威武的皮卡丘完成签到,获得积分10
22秒前
virgil应助机智的思远采纳,获得10
22秒前
23秒前
24秒前
cys完成签到,获得积分20
25秒前
25秒前
ding应助风中的向卉采纳,获得30
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233196
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212752
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376718
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623086