Machine learning algorithms for real-time coal recognition using monitor-while-drilling data

演习 煤矿开采 钻探 采矿工程 测井 人工神经网络 人工智能 地质学 机器学习 计算机科学 石油工程 工程类 机械工程 废物管理
作者
Gilles Eric Zagré,Michel Gamache,Richard Labib,Viktor Shlenchak
出处
期刊:International Journal of Mining, Reclamation and Environment [Taylor & Francis]
卷期号:: 1-26
标识
DOI:10.1080/17480930.2023.2243783
摘要

ABSTRACTAccurate coal seam identification is crucial in coal mining to prevent resource wastage and potential damage to coal seams from misplaced explosives. The current industry standard involves drilling past the seam and refilling the hole, a resource-intensive process. Manual seam detection is error-prone, and geophysical logging, performed for only a subset of drill holes, is costly and time-consuming. Monitor-While-Drilling (MWD) data captures drill response metrics like rotary speed and torque, influenced by local geology. These MWD measurements offer insights into geology, including hardness and rock type; They can be used for real-time rock recognition using advanced artificial intelligence techniques. This study focuses on developing tools for precise coal recognition and identification of the top of coal seams using MWD data. Several Machine Learning classifiers are employed, each providing unique data interpretations, and their results are integrated into a more reliable prediction. An artificial neural network is used for rock density regression, which is then used to correct depth offset between geophysical loggings and drill MWD data. The research demonstrates that MWD data can enable real-time coal seam identification, reducing the reliance on time-consuming and expensive geophysical logging. The integrated model accurately identifies the top of coal seams within a ± 20 cm margin.KEYWORDS: Artificial neural networkrock recognitionrock classificationmeasurement-while-drillingmachine learningensemble learning AcknowledgmentsThis project was also supported by the NSERC CRD program: RDCPJ53815-18.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work has been supported and partly funded by Peck Tech Consulting Ltd through the MITACS Accelerate program. The authors are grateful to the Peck Tech Consulting team and management for their valuable input and for providing the supporting data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风起人散发布了新的文献求助10
刚刚
1秒前
2秒前
骆風发布了新的文献求助10
2秒前
3秒前
cocu117发布了新的文献求助10
4秒前
4秒前
4秒前
yuan完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
4秒前
13完成签到,获得积分20
5秒前
1111发布了新的文献求助10
5秒前
11发布了新的文献求助10
5秒前
思源应助哈哈哈采纳,获得10
7秒前
hlxhlx发布了新的文献求助20
7秒前
7秒前
兴奋的小笼包完成签到,获得积分10
7秒前
黎书禾完成签到,获得积分10
9秒前
于梦强发布了新的文献求助10
10秒前
wysy应助祝莞采纳,获得10
10秒前
chunfneg完成签到,获得积分20
10秒前
11秒前
kangyan完成签到,获得积分10
12秒前
floating发布了新的文献求助10
12秒前
iNk应助YYY采纳,获得20
13秒前
科目三应助shu采纳,获得10
13秒前
飞飞wolf发布了新的文献求助10
13秒前
甜甜穆完成签到,获得积分10
13秒前
halo完成签到,获得积分10
14秒前
夏天关注了科研通微信公众号
14秒前
英俊的铭应助hlxhlx采纳,获得10
14秒前
Zxffei完成签到,获得积分10
14秒前
成就的寒天完成签到,获得积分20
14秒前
15秒前
奋斗的板栗完成签到,获得积分10
16秒前
快乐滑板应助生动的翠容采纳,获得10
16秒前
白羊完成签到,获得积分10
16秒前
棋士发布了新的文献求助10
17秒前
骆風完成签到,获得积分10
18秒前
Tourist应助棒打嘤嘤怪采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102