Machine learning algorithms for real-time coal recognition using monitor-while-drilling data

演习 煤矿开采 钻探 采矿工程 测井 人工神经网络 人工智能 地质学 机器学习 计算机科学 石油工程 工程类 机械工程 废物管理
作者
Gilles Eric Zagré,Michel Gamache,Richard Labib,Viktor Shlenchak
出处
期刊:International Journal of Mining, Reclamation and Environment [Informa]
卷期号:: 1-26
标识
DOI:10.1080/17480930.2023.2243783
摘要

ABSTRACTAccurate coal seam identification is crucial in coal mining to prevent resource wastage and potential damage to coal seams from misplaced explosives. The current industry standard involves drilling past the seam and refilling the hole, a resource-intensive process. Manual seam detection is error-prone, and geophysical logging, performed for only a subset of drill holes, is costly and time-consuming. Monitor-While-Drilling (MWD) data captures drill response metrics like rotary speed and torque, influenced by local geology. These MWD measurements offer insights into geology, including hardness and rock type; They can be used for real-time rock recognition using advanced artificial intelligence techniques. This study focuses on developing tools for precise coal recognition and identification of the top of coal seams using MWD data. Several Machine Learning classifiers are employed, each providing unique data interpretations, and their results are integrated into a more reliable prediction. An artificial neural network is used for rock density regression, which is then used to correct depth offset between geophysical loggings and drill MWD data. The research demonstrates that MWD data can enable real-time coal seam identification, reducing the reliance on time-consuming and expensive geophysical logging. The integrated model accurately identifies the top of coal seams within a ± 20 cm margin.KEYWORDS: Artificial neural networkrock recognitionrock classificationmeasurement-while-drillingmachine learningensemble learning AcknowledgmentsThis project was also supported by the NSERC CRD program: RDCPJ53815-18.Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work has been supported and partly funded by Peck Tech Consulting Ltd through the MITACS Accelerate program. The authors are grateful to the Peck Tech Consulting team and management for their valuable input and for providing the supporting data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
文静的枫叶完成签到,获得积分10
1秒前
科目三应助神麒小雪采纳,获得10
1秒前
zzznznnn发布了新的文献求助10
2秒前
pbf发布了新的文献求助20
2秒前
科研通AI5应助有风采纳,获得10
3秒前
Lin完成签到,获得积分10
3秒前
科研通AI5应助肉松小贝采纳,获得10
4秒前
粉色完成签到,获得积分10
4秒前
Ll发布了新的文献求助10
4秒前
4秒前
愉快彩虹发布了新的文献求助10
5秒前
CTL完成签到,获得积分10
5秒前
5秒前
共享精神应助加减乘除采纳,获得10
5秒前
5秒前
恬恬完成签到,获得积分10
5秒前
6秒前
22发布了新的文献求助10
6秒前
aacc956发布了新的文献求助10
6秒前
6秒前
谨慎涵柏完成签到,获得积分10
7秒前
快乐的如风完成签到,获得积分10
8秒前
9秒前
吃猫的鱼完成签到,获得积分10
9秒前
脑洞疼应助润润轩轩采纳,获得10
10秒前
刘文静完成签到,获得积分10
11秒前
Southluuu发布了新的文献求助10
11秒前
chenjyuu发布了新的文献求助10
11秒前
11秒前
粗暴的仙人掌完成签到,获得积分20
11秒前
12秒前
12秒前
12秒前
logic发布了新的文献求助10
12秒前
习习应助生动的雨竹采纳,获得10
12秒前
bo完成签到 ,获得积分10
12秒前
迟大猫应助啵乐乐采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759