Machine learning-guided underlying decisive factors of high-performance membrane distillation system: Membrane properties, operation conditions and solution composition

膜蒸馏 结垢 工作流程 膜污染 工艺工程 计算机科学 润湿 人工智能 粒子群优化 生化工程 机器学习 化学 海水淡化 工程类 化学工程 数据库 生物化学
作者
Jun Ma,Hang Xu,Anqi Wang,Ao Wang,Li Gao,Mingmei Ding
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:327: 124964-124964 被引量:10
标识
DOI:10.1016/j.seppur.2023.124964
摘要

Membrane distillation (MD) is considered as one of the promising membrane technologies with the potential to effectively produce freshwater from high concentration brines. Increasing demand for freshwater necessitates a deep understanding of the high-performance MD systems. Traditional experimental approaches are limited in their ability to comprehensively explore factors from multiple perspectives. Herein, a comprehensive machine learning (ML) workflow comprising of four distinct modules was devised to elucidate the decisive factors of high-performance MD systems. A comprehensive database was constructed consisting of 25 input features with membrane properties, operating conditions, and solution composition, along with the inclusion of three output performance indices, namely flux, wetting, and fouling. Leveraging automated machine learning (AutoML) algorithms, three ML models have been developed for accurately predicting the performance of MD system. We interpreted the ML models and extracted meaningful insights pertaining to the contributions of important factors on performances. The results indicated that ML can capture the important roles of the temperature difference between feed and permeate (ΔT). Furthermore, the water contact angle (WCA) made considerable contributions to membrane wetting, and module size attached more importance to membrane fouling. Based on the predictive models, the particle swarm optimization (PSO) effectively inferred 6 optimal parameters to achieve high-performance for the MD system. Our work represents a paradigm shift in the field of membrane technologies, highlighting the potential of ML-guided methods to elucidate the fundamental mechanisms of high-performance MD systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
尤珩发布了新的文献求助10
1秒前
毛豆应助古娜拉采纳,获得10
2秒前
2秒前
2秒前
贝贝完成签到,获得积分20
2秒前
3秒前
LSH105完成签到,获得积分20
3秒前
4秒前
林溪完成签到,获得积分10
4秒前
5秒前
在水一方应助2021采纳,获得10
5秒前
5秒前
5秒前
6秒前
hh发布了新的文献求助10
7秒前
doddy发布了新的文献求助10
7秒前
fer完成签到,获得积分10
7秒前
奔奔发布了新的文献求助10
8秒前
科研通AI5应助Destiny采纳,获得10
8秒前
子舒发布了新的文献求助30
8秒前
9秒前
852应助小杨爱科研采纳,获得10
9秒前
10秒前
ljl完成签到 ,获得积分10
10秒前
CipherSage应助GRDGRDGRD采纳,获得10
11秒前
吴壮发布了新的文献求助10
11秒前
共享精神应助Mp4采纳,获得10
11秒前
11秒前
阔达碧空发布了新的文献求助10
11秒前
宋丽娟发布了新的文献求助10
13秒前
火星上的菲鹰应助asd采纳,获得10
13秒前
14秒前
媛LZ发布了新的文献求助10
14秒前
古娜拉完成签到,获得积分10
14秒前
Cheung2121发布了新的文献求助10
14秒前
万能图书馆应助船夫采纳,获得10
15秒前
奕奕完成签到,获得积分10
15秒前
科研通AI5应助LSH105采纳,获得10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160