Quantitative identification of daily mental fatigue levels based on multimodal parameters

光容积图 特征(语言学) 计算机科学 人工智能 随机森林 特征提取 模式识别(心理学) 相互信息 计算机视觉 语言学 哲学 滤波器(信号处理)
作者
Ruijuan Chen,Rui Wang,Jieying Fei,Liuping Huang,Huiquan Wang
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:94 (9) 被引量:3
标识
DOI:10.1063/5.0162312
摘要

Fatigue has become an important health problem in modern life; excessive mental fatigue may induce various cardiovascular diseases. Most current mental fatigue recognition is based only on specific scenarios and tasks. To improve the accuracy of daily mental fatigue recognition, this paper proposes a multimodal fatigue grading method that combines three signals of electrocardiogram (ECG), photoplethysmography (PPG), and blood pressure (BP). We collected ECG, PPG, and BP from 22 subjects during three time periods: morning, afternoon, and evening. Based on these three signals, 56 characteristic parameters were extracted from multiple dimensions, which comprehensively covered the physiological information in different fatigue states. The extracted parameters were compared with the feature optimization ability of recursive feature elimination (RFE), maximal information coefficient, and joint mutual information, and the optimum feature matrix selected was input into random forest (RF) for a three-level classification. The results showed that the accuracy of classification of fatigue using only one physiological feature was 88.88%, 92.72% using a combination of two physiological features, and 94.87% using all three physiological features. This study indicates that the fusion of multiple physiological traits contains more comprehensive information and better identifies the level of mental fatigue, and the RFE-RF model performs best in fatigue identification. The BP variability index is useful for fatigue classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
憨憨发布了新的文献求助10
1秒前
111111完成签到,获得积分10
1秒前
张小龙完成签到 ,获得积分10
2秒前
3秒前
3秒前
可爱的函函应助清爽聋五采纳,获得10
3秒前
加菲丰丰完成签到,获得积分0
3秒前
6秒前
sophieCCM0302发布了新的文献求助10
9秒前
星辰大海应助竹外桃花采纳,获得10
10秒前
小秃兄完成签到,获得积分10
10秒前
11秒前
and999完成签到,获得积分10
12秒前
14秒前
小马到处跑完成签到,获得积分10
15秒前
尼莫发布了新的文献求助10
17秒前
sophieCCM0302完成签到,获得积分10
18秒前
wlz发布了新的文献求助10
20秒前
21秒前
桐桐应助温柔半梦采纳,获得10
21秒前
22秒前
gege完成签到 ,获得积分10
22秒前
申思完成签到,获得积分10
23秒前
25秒前
jieli发布了新的文献求助10
25秒前
27秒前
申思发布了新的文献求助10
28秒前
钦点小黑完成签到 ,获得积分10
28秒前
30秒前
开心完成签到,获得积分10
30秒前
jieli完成签到,获得积分10
31秒前
lalalala发布了新的文献求助10
32秒前
温柔半梦发布了新的文献求助10
35秒前
35秒前
薄荷发布了新的文献求助10
36秒前
wlz完成签到,获得积分10
37秒前
lalalala完成签到,获得积分20
39秒前
XZY发布了新的文献求助10
40秒前
舒心的耷完成签到,获得积分10
41秒前
锦瑟完成签到,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023