作者
Mengnan Zeng,Aozi Feng,Li Wang,Kun Li,Jihong Zhou
摘要
Acute liver injury (ALI) refers to a disease in which the liver is affected by factors such as chemical substances, alcohol, and virus infection in a short time, resulting in damage to liver cells. Achyranthes bidentata Bl. with the hepatoprotective activity has attracted great attention. In this study, a pentacyclic triterpenoid (Aralia saponin A, AsA) was isolated from roots of Achyranthes bidentata Bl. and its anti-ALI activity, as well as the mechanisms, were investigated for the first time.AsA (10 or 20 mg/kg, i.g.) was administered over a period of 1 weeks, following which liver injury was induced by LPS (10 µg/kg)/D-GalN (700 mg/kg). H&E staining of liver, Aspartate amino transferase (AST), Alanine transaminase (ALT) and cytokines was employed to investigate ALI relevant features. The mitochondrial morphology and levels of mitochondrial membrane potential (MMP), oxidative stress balance, apoptosis, average fluorescence intensity of 2-DG, natural killer (NK) cells in liver tissues were determined to assess the oxidative stress damage and inflammatory injury. Transcriptomics and metabonomics analysis were employed to clarify the mechanisms. Additionally, the mRNA and protein expression levels of Sphingosine 1-phosphate (S1P), Sphingosine kinase-1 (SPKH1), Sphingosine 1 phosphate receptor 1 (S1PR1), Sphingosine 1 phosphate receptor 3 (S1PR3), TNF receptor associated factor 2 (TRAF-2), Phospho-NF- kappaB p65 (p-P65), NF- kappaB p65 (P65), Proto-oncogene ras (Ras), Ras-related C3 botulinum toxin substrate (Rac), Phospholipase C (PLC), Interleukin 6 (IL-6), Tumor necrosis factor α (TNF-α), Interleukin 1β (IL-1β), Vascular cell adhesion molecule 1 (Vcam1), CC chemokine ligand-2 (Ccl2) were analyzed. The mediating role of SPHK1 in the observed effects caused by AsA was assessed by investigatin SPHK1 transfection silencing/overexpression against AsA in AML12 cells induced by LPS/D-GalN.AsA can ameliorate liver function, inflammation, mitochondrial structure and oxidative stress in the ALI model. Meanwhile, AsA led to downregulated expression of proteins associated with sphingolipid signaling pathway. Silencing of SPHK1 led to enhanced protective effects of AsA, while over-expression of SPHK1 led to degraded protective effects of AsA in LPS/D-GalN-induced AML12 cells, suggesting that ALI is regulated by active molecules of AsA by means of SPHK1 mediation.AsA can ameliorate LPS/D-GalN-induced ALI by inhibiting inflammation and oxidative stress via the SPHK1/S1P/S1PR1 pathway. In this way, a molecular justification is provided for AsA application in ALI treatment.