钒
锂(药物)
扩散
动力学
材料科学
八面体
钴
阴极
渗透(认知心理学)
星团(航天器)
动力学蒙特卡罗方法
离子
化学物理
蒙特卡罗方法
化学
热力学
无机化学
物理化学
物理
医学
统计
数学
有机化学
量子力学
神经科学
生物
计算机科学
程序设计语言
内分泌学
作者
Zinab Jadidi,Tina Chen,Luis Barroso-Luque,Gerbrand Ceder
标识
DOI:10.1021/acs.chemmater.3c01941
摘要
Disordered rocksalt Li-excess (DRX) compounds have emerged as promising new cathode materials for lithium-ion batteries, as they can consist solely of resource-abundant metals and eliminate the need for cobalt or nickel. A deeper understanding of the lithium-ion transport kinetics in DRX compounds is essential for enhancing their rate performance. This study employs first-principles calculations, cluster expansion techniques, and kinetic Monte Carlo simulations to investigate the Li+ transport properties in DRX Li2–xVO3, where 0 ≤ x ≤ 1. Our findings underscore (i) the necessity of accounting for both tetrahedral and octahedral Li occupancy when predicting the transport properties in DRX materials, (ii) the factors influencing the variation in the diffusion coefficients with Li content in Li2–xVO3, and (iii) the impact of Li+ correlated motion on the kinetics of Li+ transport. We reveal that the relative stability of tetrahedral and octahedral Li determines the number of active sites within the percolation network, subsequently affecting the Li+ transport properties. Furthermore, we demonstrate that the wide site energy distribution causes correlated motion in Li2–xVO3, which hinders Li+ transport.
科研通智能强力驱动
Strongly Powered by AbleSci AI