Revolutionizing material design for protonic ceramic fuel cells: Bridging the limitations of conventional experimental screening and machine learning methods

桥接(联网) 陶瓷 计算机科学 阴极 燃料电池 过程(计算) 工艺工程 材料科学 化学工程 工程类 电气工程 计算机网络 操作系统 复合材料
作者
Idris Temitope Bello,Daqin Guan,Na Yu,Zheng Li,Yufei Song,Xi Chen,Siyuan Zhao,Qijiao He,Zongping Shao,Meng Ni
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:477: 147098-147098 被引量:12
标识
DOI:10.1016/j.cej.2023.147098
摘要

The commercial viability of protonic ceramic fuel cells (PCFCs) is contingent upon developing highly active and stable cathode materials. The conventional trial-and-error process is time-consuming and costly for cathode material development, while the availability of sufficient and reliable datasets limits the recently emerging machine learning (ML) method. Here, we propose a novel approach based on the experimental design paradigm (EDP) to efficiently facilitate PCFC cathode materials’ development with a minimal dataset. As a rigorous systematic statistical approach, we employ the EDP for strategic variation of multiple elements and measure their effect on desired performance characteristics. We generate empirical models that reveal the optimal concentrations and interactions of the elemental composition and performance characteristics. In this study, we select the BaCoαCeβFeγYζO3-δ series as a proof-of-concept, and the optimal composition, BaCo0.667Ce0.167Fe0.083Y0.083O3-δ, was promptly determined—guided by the EDP—using only 16 independent conditions and 32 randomized experimental runs. We further demonstrate the EDP’s versatility by optimizing the widely-used and high-performing Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode material for solid oxide fuel cells. Our results highlight the potential of the EDP for effectively designing superior materials for solid-state electrochemical power generation systems, offering a reliable and practical alternative to conventional trial-and-error screening and ML methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
找找找文献完成签到 ,获得积分10
1秒前
1秒前
3秒前
ZeJ发布了新的文献求助10
4秒前
高高旭尧发布了新的文献求助10
6秒前
7秒前
君与同行完成签到,获得积分10
8秒前
mouxq发布了新的文献求助10
9秒前
10秒前
信仰完成签到,获得积分10
11秒前
小美发布了新的文献求助10
11秒前
赘婿应助Wang采纳,获得10
11秒前
FashionBoy应助NMZN采纳,获得10
13秒前
上天的朱完成签到 ,获得积分10
13秒前
Lucas应助L同学采纳,获得10
14秒前
17秒前
瞳孔完成签到,获得积分10
17秒前
17秒前
那些年发布了新的文献求助10
17秒前
19秒前
乐乐应助科研通管家采纳,获得10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
爱静静应助科研通管家采纳,获得10
20秒前
研友_VZG7GZ应助月流瓦采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
sunshine应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得20
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
鹏鹏关注了科研通微信公众号
21秒前
领导范儿应助sunzhuxi采纳,获得10
22秒前
万能图书馆应助阳风采纳,获得10
23秒前
ding应助繁荣的又夏采纳,获得10
24秒前
27秒前
研友_ZGXbo8完成签到,获得积分10
28秒前
研友_Lw7MKL完成签到,获得积分10
29秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261058
求助须知:如何正确求助?哪些是违规求助? 2901992
关于积分的说明 8318508
捐赠科研通 2571708
什么是DOI,文献DOI怎么找? 1397242
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632216