Multi-relational dynamic graph representation learning

计算机科学 拓扑图论 理论计算机科学 图形 动态网络分析 特征学习 代表(政治) 统计关系学习 拓扑(电路) 关系数据库 人工智能 数据挖掘 数学 电压图 折线图 计算机网络 组合数学 政治 政治学 法学
作者
Pingtao Duan,Xiangsheng Ren,Yuting Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:558: 126688-126688
标识
DOI:10.1016/j.neucom.2023.126688
摘要

In recent years, many dynamic graph representation learning methods have emerged due to the ubiquity of dynamic graph networks, such as social networks, medical networks, citation networks and traffic networks. Many researchers only consider the unitary relational topological information in a dynamic graph. However, real dynamic networks contain a large amount of multi-relational topological information. For example, there are different interactive relations such as sending a message, adding a friend, making a phone call, and sending an email in a social network, and they have different effects on node representation and should be distinguished. In addition, the non-topological information of nodes plays an important role in the node representation. Although these two types of information have been shown to improve the performance of many dynamic graph tasks, existing dynamic graph representation learning models could not integrate them well. Therefore, in this paper, we propose MRDGNN, a Multi-Relational Dynamic Graph Neural Network model, which can capture the dynamic evolution under each relational topology in the graph through a temporal multi-relational topology updater, including the participation of multi-relational topological and non-topological information of nodes. These two kinds of information will be adaptively fused into the representation of nodes by a merger. MRDGNN is continuously updated with the evolution of dynamic graphs and is a real-time learnable representation learning framework. Finally, we validate the effectiveness of MRDGNN for link prediction and relation prediction on four real datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱小小完成签到,获得积分10
2秒前
3秒前
wdmxsmebdx完成签到,获得积分10
4秒前
5秒前
329完成签到,获得积分10
7秒前
研友_ngqyz8发布了新的文献求助10
7秒前
8秒前
season完成签到,获得积分20
8秒前
woollen2022完成签到,获得积分10
9秒前
10秒前
10秒前
土豪的雅柔完成签到,获得积分10
10秒前
美好钻石发布了新的文献求助50
11秒前
season发布了新的文献求助10
11秒前
一一应助翩璸采纳,获得20
13秒前
田柾国发布了新的文献求助10
14秒前
北陌发布了新的文献求助10
15秒前
wqm完成签到,获得积分10
16秒前
16秒前
wang关注了科研通微信公众号
17秒前
小燕完成签到 ,获得积分10
17秒前
酷波er应助111采纳,获得10
17秒前
Ava应助329采纳,获得10
19秒前
19秒前
21秒前
duonicola完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
Tohka完成签到 ,获得积分10
23秒前
西瓜珺完成签到,获得积分10
24秒前
桐桐应助MoXian采纳,获得10
24秒前
轩逸完成签到 ,获得积分10
25秒前
25秒前
wang发布了新的文献求助10
28秒前
kikyouzqq发布了新的文献求助10
29秒前
研友_ngqyz8完成签到,获得积分10
30秒前
天天快乐应助一颗星采纳,获得10
31秒前
zho发布了新的文献求助10
31秒前
彪yu完成签到 ,获得积分10
32秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871136
关于积分的说明 8173991
捐赠科研通 2538057
什么是DOI,文献DOI怎么找? 1370279
科研通“疑难数据库(出版商)”最低求助积分说明 645753
邀请新用户注册赠送积分活动 619548