Artificial Intelligence Tracking of Otologic Instruments in Mastoidectomy Videos

医学 乳突切除术 听力学 跟踪(教育) 耳外科手术 医学物理学 外科 中耳 胆脂瘤 心理学 教育学
作者
George S. Liu,Sharad Parulekar,M. Lee,Trishia El Chemaly,Mohamed Diop,R E Park,Nikolas H. Blevins
出处
期刊:Otology & Neurotology [Ovid Technologies (Wolters Kluwer)]
卷期号:45 (10): 1192-1197
标识
DOI:10.1097/mao.0000000000004330
摘要

Objective Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos. Study Design Retrospective case series. Setting Tertiary care center. Subjects Six otolaryngology residents (PGY 3–5) and one senior neurotology attending. Interventions Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments. Main Outcome Measure(s) Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon. Results The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery. Conclusions An AI model can track the drill in mastoidectomy videos with high accuracy and near–real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
劲秉应助wangyanwxy采纳,获得10
刚刚
Mr.Young完成签到,获得积分10
刚刚
louis136116完成签到,获得积分10
3秒前
4秒前
4秒前
小巧亦竹完成签到,获得积分10
5秒前
Owen应助骆钧采纳,获得10
6秒前
忆之发布了新的文献求助10
6秒前
黄pp发布了新的文献求助10
9秒前
Candice应助海纳百川采纳,获得10
9秒前
科研通AI2S应助洁净的嘉熙采纳,获得30
9秒前
10秒前
10秒前
Auoroa发布了新的文献求助10
11秒前
12秒前
汉堡包应助开心的问儿采纳,获得10
12秒前
我爱磕盐完成签到,获得积分10
13秒前
13秒前
朱荧荧发布了新的文献求助10
14秒前
典雅的静发布了新的文献求助10
15秒前
狗头发布了新的文献求助10
15秒前
慕青应助cola采纳,获得10
16秒前
小中完成签到,获得积分10
16秒前
提桶跑路完成签到 ,获得积分10
16秒前
华仔应助汀66采纳,获得10
19秒前
Zxx发布了新的文献求助10
19秒前
20秒前
21秒前
23秒前
SinaiPen发布了新的文献求助10
23秒前
石问丝发布了新的文献求助10
25秒前
可乐发布了新的文献求助10
25秒前
26秒前
黄pp完成签到,获得积分10
27秒前
李爱国应助狗头采纳,获得10
27秒前
JamesPei应助典雅的静采纳,获得10
30秒前
鳗鱼落雁完成签到 ,获得积分10
31秒前
Candice应助SinaiPen采纳,获得10
32秒前
研友_VZG7GZ应助石问丝采纳,获得10
32秒前
pluto应助guan采纳,获得10
34秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Very-high-order BVD Schemes Using β-variable THINC Method 930
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3382526
求助须知:如何正确求助?哪些是违规求助? 2997152
关于积分的说明 8772500
捐赠科研通 2682402
什么是DOI,文献DOI怎么找? 1469097
科研通“疑难数据库(出版商)”最低求助积分说明 679244
邀请新用户注册赠送积分活动 671424