Supervised Contrastive Learning-Based Domain Generalization Network for Cross-Subject Motor Decoding

一般化 解码方法 计算机科学 人工智能 领域(数学分析) 运动学习 语音识别 机器学习 心理学 数学 神经科学 算法 数学分析
作者
Hongyi Zhi,Tianyou Yu,Zhenghui Gu,Zhuobin Lin,Le Che,Yuanqing Li,Zhuliang Yu
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:2
标识
DOI:10.1109/tbme.2024.3432934
摘要

Developing an electroencephalogram (EEG)-based motor imagery and motor execution (MI/ME) decoding system that is both highly accurate and calibration-free for cross-subject applications remains challenging due to domain shift problem inherent in such scenario. Recent research has increasingly embraced transfer learning strategies, especially domain adaptation techniques. However, domain adaptation becomes impractical when the target subject data is either difficult to obtain or unknown. To address this issue, we propose a supervised contrastive learning-based domain generalization network (SCLDGN) for cross-subject MI/ME decoding. Firstly, the feature encoder is purposefully designed to learn the EEG discriminative feature representations. Secondly, the domain alignment based on deep correlation alignment constrains the representations distance across various domains to learn domain-invariant features. In addition, the class regularization block is proposed, where the supervised contrastive learning with domain-agnostic mixup is established to learn the class-relevant features and achieve class-level alignment. Finally, in the latent space, clusters of domain-agnostic representations from the same class are mapped closer together. Consequently, SCLDGN is capable of learning domain-invariant and class-relevant discriminative representations, which are essential for effective cross-subject decoding. Extensive experiments conducted on six MI/ME datasets demonstrate the effectiveness of the proposed method in comparison with other state-of-the-art approaches. Furthermore, ablation study and visualization analyses explain the generalization mechanism of the proposed method and also show neurophysiologically meaningful patterns related to MI/ME.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪慧冰兰完成签到,获得积分20
刚刚
夏天发布了新的文献求助10
1秒前
风趣问雁完成签到,获得积分10
1秒前
共享精神应助77采纳,获得10
1秒前
科研通AI5应助Lily采纳,获得10
1秒前
聆风发布了新的文献求助10
3秒前
我是老大应助cwb采纳,获得10
3秒前
科研通AI5应助夏天采纳,获得10
5秒前
爱静静应助jia采纳,获得30
6秒前
6秒前
SciGPT应助llt采纳,获得10
6秒前
7秒前
adeno完成签到,获得积分10
7秒前
7秒前
8秒前
emm发布了新的文献求助10
9秒前
9秒前
hh发布了新的文献求助10
10秒前
11秒前
科研通AI5应助执念的鱼采纳,获得100
11秒前
XYN1完成签到,获得积分10
11秒前
xiangyx发布了新的文献求助10
12秒前
13秒前
酷波er应助Cindy采纳,获得10
13秒前
13秒前
义气笑容发布了新的文献求助10
13秒前
cwb发布了新的文献求助10
13秒前
weirdo发布了新的文献求助10
14秒前
14秒前
盛清让发布了新的文献求助10
14秒前
终于花开日完成签到 ,获得积分10
15秒前
silvery发布了新的文献求助20
15秒前
16秒前
Romitavia发布了新的文献求助10
17秒前
hh完成签到,获得积分20
17秒前
hsy发布了新的文献求助10
17秒前
17秒前
niukaseir发布了新的文献求助30
18秒前
KK发布了新的文献求助10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555076
求助须知:如何正确求助?哪些是违规求助? 3130818
关于积分的说明 9388790
捐赠科研通 2830291
什么是DOI,文献DOI怎么找? 1555914
邀请新用户注册赠送积分活动 726331
科研通“疑难数据库(出版商)”最低求助积分说明 715716