CNN-ELMNet: Fault Diagnosis of Induction Motor Bearing Based on Cross-modal Vector Fusion

计算机科学 卷积神经网络 断层(地质) 人工智能 模式识别(心理学) 超参数 定子 情态动词 联营 特征提取 感应电动机 机器学习 工程类 电压 电气工程 地质学 机械工程 地震学 化学 高分子化学
作者
Lingzhi Yi,Yi Zhang,Jun Zhan,Yahui Wang,Tao Sun,Jiao Long,Jiangyong Liu,Li Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6e14
摘要

Abstract As the primary driving equipment in industrial, accurate fault diagnosis and condition monitoring of induction motor is crucial for ensuring operational safety. This paper focuses on the bearing faults of induction motors, which have a substantial impact on both the mechanical and electromagnetic systems of the motors. However, in diagnostic tasks, we are faced with the challenges of multi-source, multi-modal data, significant influence from environmental noise, and minimal differentiation between fault data. This paper proposed a novel cross-modal vector fusion fault diagnosis and classification model (CNN-ELMNet), which includes a Cross-Modal Vector Fusion Network (VF) based on D-S evidence theory, feature extraction layer (FE) and classification layer (CL). Specifically, the VF prioritizes the integration of diagnostic results from individual vibration signals or stator current signals within convolutional neural networks with the features of the input implicit vectors as decision-making evidence, followed by weighted vector fusion through D-S evidence theory at the decision level. The FE focuses on retaining the convolutional, pooling, and fully connected layers of the convolutional network and freezing the final fully connected layer, thus preserving training parameters and fully utilizing the network's powerful feature extraction capabilities. The CL includes an Extreme Learning Machine optimized for random hyperparameters using the SAO algorithm, which offers rapid convergence and high classification recognition rates. The CNN-ELMNet model combines a convolutional network with an Extreme Learning Machine optimized by the SAO algorithm, which not only preserves the model's feature extraction capability but also enhances the convergence speed and classification recognition rate of the model. Experimental results on real datasets demonstrate that the proposed model exhibits strong stability, generalization, and high accuracy in fault diagnosis, achieving an accuracy rate of 99.29% and 98.75%. This provides a more feasible solution for the bearing fault diagnosis of induction motors and holds promising prospects for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助乔心采纳,获得10
2秒前
psy发布了新的文献求助10
4秒前
山山完成签到,获得积分20
7秒前
烟花应助惠JUI采纳,获得10
9秒前
10秒前
11秒前
persi完成签到 ,获得积分10
12秒前
阚曦完成签到,获得积分10
12秒前
psy完成签到,获得积分10
12秒前
14秒前
zhangxin发布了新的文献求助10
14秒前
阿媛呐完成签到,获得积分10
14秒前
luoye完成签到 ,获得积分10
16秒前
传奇3应助夏鹿采纳,获得10
16秒前
冷艳的小懒虫完成签到 ,获得积分10
17秒前
KT发布了新的文献求助10
18秒前
Qzy完成签到,获得积分10
19秒前
kinase完成签到 ,获得积分10
19秒前
20秒前
21完成签到,获得积分10
20秒前
Miyya完成签到 ,获得积分10
20秒前
勤奋幻天完成签到 ,获得积分10
21秒前
29秒前
31秒前
hitagi完成签到,获得积分10
32秒前
夏鹿发布了新的文献求助10
35秒前
勤恳慕蕊完成签到,获得积分10
36秒前
浊人发布了新的文献求助10
37秒前
可爱香槟发布了新的文献求助30
38秒前
思源应助KT采纳,获得10
39秒前
夏鹿完成签到,获得积分20
40秒前
英俊的铭应助德德采纳,获得100
44秒前
肥肠的枣糕啊完成签到,获得积分10
45秒前
精明芷巧完成签到 ,获得积分10
47秒前
47秒前
Zzoe_S发布了新的文献求助10
47秒前
Lucifer完成签到,获得积分10
49秒前
失眠的安卉完成签到,获得积分10
53秒前
KT完成签到,获得积分10
56秒前
56秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159813
求助须知:如何正确求助?哪些是违规求助? 2810709
关于积分的说明 7889177
捐赠科研通 2469823
什么是DOI,文献DOI怎么找? 1315112
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012