锰
析氧
电解水
催化作用
溶解
分解水
无定形固体
氧气
电催化剂
吸附
电解
贵金属
无机化学
过渡金属
材料科学
化学
化学工程
电化学
物理化学
电解质
结晶学
有机化学
电极
工程类
光催化
生物化学
作者
Qin Yue,Xiaopo Niu,Rong Zhao,Jiuyi Sun,Zhi-Hui Xu,Zhenguo Chi,Danni Liu,Lili Guo,Chang Liu,Junfeng Zhang,Qingfa Wang
标识
DOI:10.1021/acscatal.4c01707
摘要
Designing highly active and durable electrocatalysts with low noble-metal mass-loading to boost the sluggish oxygen evolution reaction is crucial for hydrogen production. Herein, a Ru-enriched surface and oxygen-defective RuMnOx@RuOx-1.5 catalyst is developed with enhanced activity and robust stability through MnOx serving as an electron reservoir. This RuMnOx@RuOx-1.5 catalyst with an ultralow mass-loading of 91.2 μgRu cm−2 delivers 1645 A gRu−1@1.5 V versus RHE and long-term operational stability exceeding 240 h with a high stability number (6.22 × 104) in 0.5 M H2SO4. Characterizations and theoretical calculations reveal that the sacrificial spaced Mn dissolution makes the adjacent Mn serve as an electron reservoir to replenish electrons on active Ru sites and suppress the overoxidation of Ru extending the robust stability. The crystalline−amorphous heterointerfaces, abundant oxygen vacancies, and stable Ru−O−Mn motifs simultaneously facilitate superior activity. The weaker adsorption between Ru sites and oxo-intermediates lowers the energy barrier from O* to *OOH following the adsorbate evolution mechanism (AEM) pathway. This work provides a promising perspective on designing cost-effective OER electrocatalysts for proton exchange membrane water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI