Sprain energy consequences for damage localization and fracture mechanics

断裂力学 软化 有限元法 机械 断裂(地质) 裂纹扩展阻力曲线 矢量场 流离失所(心理学) 损伤力学 结构工程 材料科学 数学分析 数学 裂缝闭合 物理 工程类 复合材料 心理学 心理治疗师
作者
Houlin Xu,Anh Tay Nguyen,Zdeněk P. Bažant
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (40)
标识
DOI:10.1073/pnas.2410668121
摘要

The 2023 smooth Lagrangian Crack-Band Model (slCBM), inspired by the 2020 invention of the gap test, prevented spurious damage localization during fracture growth by introducing the second gradient of the displacement field vector, named the "sprain," as the localization limiter. The key idea was that, in the finite element implementation, the displacement vector and its gradient should be treated as independent fields with the lowest ([Formula: see text]) continuity, constrained by a second-order Lagrange multiplier tensor. Coupled with a realistic constitutive law for triaxial softening damage, such as microplane model M7, the known limitations of the classical Crack Band Model were eliminated. Here, we show that the slCBM closely reproduces the size effect revealed by the gap test at various crack-parallel stresses. To describe it, we present an approximate corrective formula, although a strong loading-path dependence limits its applicability. Except for the rare case of zero crack-parallel stresses, the fracture predictions of the line crack models (linear elastic fracture mechanics, phase-field, extended finite element method (XFEM), cohesive crack models) can be as much as 100% in error. We argue that the localization limiter concept must be extended by including the resistance to material rotation gradients. We also show that, without this resistance, the existing strain-gradient damage theories may predict a wrong fracture pattern and have, for Mode II and III fractures, a load capacity error as much as 55%. Finally, we argue that the crack-parallel stress effect must occur in all materials, ranging from concrete to atomistically sharp cracks in crystals.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
称心小天鹅完成签到,获得积分10
2秒前
ChenYX发布了新的文献求助10
4秒前
优雅大树完成签到,获得积分20
4秒前
Lu发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助20
4秒前
笠原May发布了新的文献求助10
6秒前
搜集达人应助璃光浮月采纳,获得10
6秒前
谨慎的安柏完成签到 ,获得积分10
6秒前
6秒前
优雅大树发布了新的文献求助30
7秒前
而已完成签到,获得积分10
8秒前
cc完成签到 ,获得积分10
8秒前
8秒前
10秒前
10秒前
AquaR完成签到,获得积分10
10秒前
七月七日晴完成签到,获得积分10
11秒前
帅气爆米花应助wang采纳,获得290
13秒前
lxj发布了新的文献求助10
14秒前
14秒前
Lu完成签到,获得积分10
14秒前
香哥完成签到 ,获得积分10
14秒前
CodeCraft应助徐立涛采纳,获得10
16秒前
17秒前
卷卷卷儿完成签到 ,获得积分10
17秒前
Akim应助神奇白马儿采纳,获得10
18秒前
小文殊完成签到 ,获得积分10
18秒前
18秒前
二分三分完成签到,获得积分10
20秒前
CipherSage应助科研采纳,获得10
21秒前
追梦人发布了新的文献求助10
21秒前
可爱语芹完成签到 ,获得积分10
21秒前
猪猪hero发布了新的文献求助10
22秒前
丰知然举报jasmineee求助涉嫌违规
22秒前
guan完成签到,获得积分10
23秒前
帅气爆米花应助小翼采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851