Tensorized Unaligned Multi-view Clustering with Multi-scale Representation Learning

计算机科学 聚类分析 比例(比率) 代表(政治) 人工智能 特征学习 自然语言处理 物理 量子力学 政治 政治学 法学
作者
Jintian Ji,Songhe Feng,Yidong Li
标识
DOI:10.1145/3637528.3671689
摘要

The Unaligned Multi-view Clustering (UMC) problem is currently receiving widespread attention, focusing on clustering unaligned multi-view data generated in real-world applications. Although some algorithms have emerged to address this issue, there still exist the following drawbacks: 1) The fully unknown correspondence of samples across views can significantly limit the exploration of consistent clustering structure. 2) The fixed representation space makes it difficult to mine the comprehensive information in the original data. 3) Unbiased tensor rank approximation is desired to capture the high-order correlation among different views. To address these issues, we proposed a novel UMC framework termed Tensorized Unaligned Multi-view Clustering with Multi-scale Representation Learning (TUMCR). Specifically, TUMCR designs a multi-scale representation learning and alignment framework, which constructs multi-scale representation spaces to comprehensively explore the unknown correspondence across views. Then, a tensorial multi-scale fusion module is proposed to fuse multi-scale representations and explore the high-order correlation hidden in different views, which utilizes the Enhanced Tensor Rank (ETR) to learn the low-rank structure. Furthermore, TUMCR is solved by an efficient algorithm with good convergence. Extensive experiments on different types of datasets demonstrate the effectiveness and superiority of our TUMCR compared with state-of-the-art methods. Our code is publicly available at: https://github.com/jijintian/TUMCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
怕黑以筠完成签到,获得积分10
2秒前
ssiing完成签到,获得积分10
3秒前
小二郎应助ckw采纳,获得10
3秒前
4秒前
小张发布了新的文献求助10
4秒前
充电宝应助理理采纳,获得10
5秒前
d22110652发布了新的文献求助10
5秒前
7秒前
云歇雨住发布了新的文献求助10
7秒前
pluto应助辣目童子采纳,获得10
7秒前
aaaaa发布了新的文献求助10
8秒前
8秒前
现实的南珍完成签到,获得积分10
8秒前
ItachiSkuya应助小程同学采纳,获得10
9秒前
淡定的日记本完成签到,获得积分10
10秒前
11秒前
搜集达人应助五五采纳,获得150
11秒前
12秒前
Hello应助朱朱采纳,获得10
12秒前
多情高丽完成签到 ,获得积分10
13秒前
羊羊发布了新的文献求助10
13秒前
xbbccc发布了新的文献求助10
14秒前
orixero应助小张采纳,获得10
15秒前
打打应助小羊要努力采纳,获得10
16秒前
明月关注了科研通微信公众号
16秒前
allorate完成签到,获得积分0
16秒前
JO LIN发布了新的文献求助10
17秒前
来自3602完成签到,获得积分10
18秒前
Zmy完成签到,获得积分10
18秒前
bkagyin应助xiaochao采纳,获得10
19秒前
19秒前
Hello应助GEZI采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159