Tensorized Unaligned Multi-view Clustering with Multi-scale Representation Learning

计算机科学 聚类分析 比例(比率) 代表(政治) 人工智能 特征学习 自然语言处理 政治学 量子力学 政治 物理 法学
作者
Jintian Ji,Songhe Feng,Yidong Li
标识
DOI:10.1145/3637528.3671689
摘要

The Unaligned Multi-view Clustering (UMC) problem is currently receiving widespread attention, focusing on clustering unaligned multi-view data generated in real-world applications. Although some algorithms have emerged to address this issue, there still exist the following drawbacks: 1) The fully unknown correspondence of samples across views can significantly limit the exploration of consistent clustering structure. 2) The fixed representation space makes it difficult to mine the comprehensive information in the original data. 3) Unbiased tensor rank approximation is desired to capture the high-order correlation among different views. To address these issues, we proposed a novel UMC framework termed Tensorized Unaligned Multi-view Clustering with Multi-scale Representation Learning (TUMCR). Specifically, TUMCR designs a multi-scale representation learning and alignment framework, which constructs multi-scale representation spaces to comprehensively explore the unknown correspondence across views. Then, a tensorial multi-scale fusion module is proposed to fuse multi-scale representations and explore the high-order correlation hidden in different views, which utilizes the Enhanced Tensor Rank (ETR) to learn the low-rank structure. Furthermore, TUMCR is solved by an efficient algorithm with good convergence. Extensive experiments on different types of datasets demonstrate the effectiveness and superiority of our TUMCR compared with state-of-the-art methods. Our code is publicly available at: https://github.com/jijintian/TUMCR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
三石发布了新的文献求助10
刚刚
生姜发布了新的文献求助10
1秒前
坛坛发布了新的文献求助10
1秒前
东皇太憨完成签到,获得积分10
1秒前
我是老大应助欢欢采纳,获得10
1秒前
Sunthief发布了新的文献求助30
2秒前
yusuf完成签到,获得积分10
2秒前
rookieLi应助kento采纳,获得30
2秒前
传奇3应助li采纳,获得10
2秒前
bluesky完成签到,获得积分10
3秒前
王平完成签到,获得积分10
4秒前
留胡子的白风完成签到,获得积分10
4秒前
我是老大应助大叉烧采纳,获得10
4秒前
5秒前
5秒前
虎虎生威完成签到,获得积分10
6秒前
7秒前
7秒前
时闲应助头发很多采纳,获得10
7秒前
8秒前
maxxie1017完成签到,获得积分10
8秒前
ping完成签到,获得积分10
9秒前
10秒前
bkagyin应助陈博士采纳,获得10
10秒前
yixing完成签到,获得积分10
10秒前
你晖哥发布了新的文献求助10
10秒前
为你博弈发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
如意土豆完成签到 ,获得积分10
12秒前
科目三应助西北大灰狼采纳,获得30
12秒前
九三发布了新的文献求助10
12秒前
13秒前
14秒前
香蕉觅云应助demo采纳,获得10
14秒前
文静外套完成签到,获得积分10
14秒前
ping发布了新的文献求助10
15秒前
15秒前
完美世界应助11采纳,获得10
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653